

UCRL-ID-151712

Scientific Component
Technology Initiative

Scott Kohn, Bill Bosl, Tammy Dahlgren, Tom Epperly,
Gary Kumfert, and Steve Smith

February 7, 2003

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and
shall not be used for advertising or product endorsement purposes.

This work was performed under the auspices of the U. S. Department of Energy by the University of
California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

This report has been reproduced directly from the best available copy.

Available electronically at http://www.doc.gov/bridge

Available for a processing fee to U.S. Department of Energy
And its contractors in paper from

U.S. Department of Energy
Office of Scientific and Technical Information

P.O. Box 62
Oak Ridge, TN 37831-0062
Telephone: (865) 576-8401
Facsimile: (865) 576-5728

E-mail: reports@adonis.osti.gov

Available for the sale to the public from
U.S. Department of Commerce

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900

E-mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/ordering.htm

OR

Lawrence Livermore National Laboratory
Technical Information Department’s Digital Library

http://www.llnl.gov/tid/Library.html

http://www.doc.gov/bridge
mailto:reports@adonis.osti.gov
mailto:orders@ntis.fedworld.gov
http://www.ntis.gov/ordering.htm

Scientific Component Technology Initiative 1

LDRD Final Report for 00-SI-002

Scientific Component
Technology Initiative

Principal Investigator: Scott Kohn
 Center for Applied Scientific Computing
 Computations Directorate

Co-Investigators: Bill Bosl, Tammy Dahlgren, Tom Epperly, Gary Kumfert, and Steve Smith

Center for Applied Scientific Computing
Computations Directorate

Funding Summary: FY00: $450K
FY01: $800K
FY02: $625K

Scientific Component Technology Initiative 2

Project Overview

The laboratory has invested a significant amount of resources towards the development of
high-performance scientific simulation software, including numerical libraries, visualization,
steering, software frameworks, and physics packages. Unfortunately, because this software
was not designed for interoperability and re-use, it is often difficult to share thes e
sophisticated software packages among applications due to differences in implementation
language, programming style, or calling interfaces.

This LDRD Strategic Initiative investigated and developed software component technology
for high-performance parallel scientific computing to address problems of complexity, re-use,
and interoperability for laboratory software. Component technology is an extension of
scripting and object-oriented software development techniques that specifically focuses on the
needs of software interoperability. Component approaches based on CORBA, COM, and
Java technologies are widely used in industry; however, they do not support massively
parallel applications in science and engineering. Our research focused on the unique
require ments of scientific computing on ASCI-class machines, such as fast in-process
connections among components, language interoperability for scientific languages, and data
distribution support for massively parallel SPMD components.

Activities and Technical Achievements

Over the course of this project, we have investigated, developed, and demonstrated scientific
component technology in the following areas.

Babel Language Interoperability Technology
We have developed a tool called Babel that addresses language interoperability issues for
high-performance parallel scientific software. Its purpose is to enable the creation,
description, and distribution of language independent software libraries. Babel uses Interface
Definition Language (IDL) techniques. An IDL describes the calling interface (but not the
implementation) of a particular software library. IDL tools such as Babel use this interface
description to generate glue code that allows a software library implemented in one supported
language to be called from any other supported language. We have designed a Scientific
Interface Definition Language (SIDL) that addresses the unique needs of parallel scientific
computing. SIDL supports complex numbers and dynamic multi-dimensional arrays as well
as parallel communication directives that are required for parallel distributed components.
Babel currently supports Fortran 77, C, C++, Python, client-side Java, and some Fortran 90.

Web-Based Component Repository
We have developed two web-based tools to simplify the sharing of component software and
the development of community software interface standards. Alexandria is a component
repository for storing component software and SIDL interface descriptions and is being
deployed as the repository in the CCA (Common Component Architecture) community
component infrastructure. Quorum is a web-based voting server that is in use by the CCA
working group for establishing software interface standards. We have deployed both
Alexandria and Quorum on the LLNL externally visible green network at http://www-
casc.llnl.gov.

Scientific Component Technology Initiative 3

Collaboration with hypre Scalable Linear Solvers Project
In collaboration with members of the hypre development team, we have integrated some of
the Babel language interoperability technology into hypre. The hypre library is a suite of
parallel scalable linear solvers and preconditioners. It supplies critical solver technology to
the ASCI program and is used by all three main ASCI codes at LLNL and by collaborators at
other national laboratories. In the long term, the hypre team plans to migrate to a software
architecture that uses Babel as an integral part of the library. In this design, Babel will
provide the primary interface to hypre for all languages supported by the library. This
approach provides the maximum benefit to the hypre library.

Demonstration Project in Laser Plasma Physics
In collaboration with the ALPS (Adaptive Laser Plasma Simulator) team at LLNL, we
demonstrated the use of Babel in a complex parallel simulation code. ALPS is an adaptive
mesh refinement simulation code that investigates the interaction of a laser with plasma for
inertial confinement fusion. Our modified ALPS code uses Python as a scripting language
and mixes C++, Fortran, and Python. For example, from the Python scripting layer, we can
call the application framework written in C++, which in turn calls a numerical routine written
in Fortran, which in turn calls a laser boundary condition module in Python. This
interoperability allows a scientist to rapidly prototype new boundary condition modules in
Python without recompiling or linking.

DOE Common Component Architecture SciDAC
We are collaborating on community technology standards with members of the DOE’s
Common Component Architecture (CCA) working group (see http://www.cca-forum.org/).
The DOE Office of Science has selected the CCA as one of the recipients of a SciDAC
(Scientific Discovery through Advanced Computing) award, a five-year $3.5M/yr research
effort consisting of DOE laboratories and academic partners intended to deliver component
technology to computational simulation efforts within the DOE. Babel plays a central role in
the CCA SciDAC center. The CCA uses the language interoperability technology developed
at LLNL as a foundation for the community common component infrastructure. Babel will
play a critical role linking SciDAC numerical and meshing libraries, typically written in C or
C++, with SciDAC applications written in Fortran 90.

Research Papers and Reports

The following four research papers and reports summarize the scope of our activities under
this strategic initiative. These papers are attached to this final report.

The first paper provides an overview of the approach and technology used to develop the
Babel and Alexandria tools. This paper was an invited presentation at the 2000 Working
Conference on Software Architectures for Scientific Computing Applications sponsored by the
International Federation for Information Processing in Ottawa, Canada. Conference
information is available at http://www.nsc.liu.se/~boein/ifip/woco8.html. The release number
is UCRL-JC-140549.

Tom Epperly, Scott Kohn, and Gary Kumfert. Component Technology for High-
Performance Scientific Simulation Software. Working Conference on "Software
Architectures for Scientific Computing Applications", International Federation for
Information Processing, Ottawa, Ontario, Canada, October 2-4, 2000.

Scientific Component Technology Initiative 4

Abstract: We are developing scientific software component technology to manage
the complexity of modern, parallel simulation software and increase the
interoperability and re-use of scientific software packages. In this paper, we describe
a language interoperability tool named Babel that enables the creation and
distribution of language-independent software libraries using interface definition
language (IDL) techniques. We have created a scientific IDL that focuses on the
unique interface description needs of scientific software, such as complex numbers,
dense multidimensional arrays, and parallel distributed objects. Preliminary results
indicate that in addition to language interoperability, this approach provides useful
tools for the design of modern object-oriented scientific software libraries. We also
describe a web-based component repository called Alexandria that facilitates the
distribution, documentation, and re-use of scientific components and libraries.

The second paper describes the use of our component technology tools in the hypre scalable
linear solvers library. This paper was presented at the 10th SIAM Conference on Parallel
Processing. The conference web site is http://www.siam.org/meetings/pp01. The release
number is UCRL-JC-104349.

Scott Kohn, Gary Kumfert, Jeff Painter, and Cal Ribbens. Divorcing Language
Dependencies from a Scientific Software Library. 10th SIAM Conference on
Parallel Processing, Portsmouth, VA, March 12-14, 2001.

Abstract: This paper describes the ideas, process, and results of the first year in an
ongoing collaboration between members of the Components Project and the hypre
Project in the Center for Applied Scientific Computing (CASC) in Lawrence
Livermore National Laboratory. The Components Project has developed a tool
called Babel that addresses language interoperability and re-use for high-
performance parallel scientific software. Its purpose is to enable the creation and
distribution of language independent software libraries. Hypre is a parallel, scalable
scientific library of linear solvers and preconditioners. By using Babel tools on hypre
in this collaboration, we found that Babel enables better software design and is an
effective tool for producing language independent scientific software libra ries at a
negligible performance overhead.

The third paper studies the performance issues associated with component technology for
high-performance scientific computing. This paper was published in collaboration with our
SciDAC co-investigators in the Common Component Architecture working group. This
paper was presented at the 2002 Workshop on Performance Optimimization via High-Level
Languages and Libraries. Conference information is available at the web site
http://www.ece.lsu.edu/jxr/ics02workshop.html . The release number is UCRL-JC-148723.

David E. Bernholdt, Wael R. Elwasif, James A. Kohl, and Thomas G. W. Epperly, A
Component Architecture for High-Performance Computing , in Proceedings of
the Workshop on Performance Optimization via High-Level Languages and
Libraries (POHLL-02), New York, NY. June 22 ,2002.

Abstract: The Common Component Architecture (CCA) provides a means for
developers to manage the complexity of large-scale scientific software systems and
to move toward a “plug and play” environment for high-performance computing.
The CCA model allows for a direct connection between components within the same
process to maintain performance on inter-component calls. It is neutral with respect
to parallelism, allowing components to use whatever means they desire to
communicate within their parallel “cohort.” We will discuss in detail the importance

Scientific Component Technology Initiative 5

of performance in the design of the CCA and will analyze the performance costs
associated with features of the CCA.

The final report discusses the use of the Babel language interoperability technology in the
context of a LLNL laser plasma application. This is an unpublished technical report. The
release number is UCRL-JC-150544.

William J. Bosl, Steven G. Smith, Tamara Dahlgren, Thomas Epperly, Scott Kohn,
and Gary Kumfert. Component Technology for Laser Plasma Simulation.
September 23 , 2002.

Abstract: This paper will discuss the application of high performance component
software technology developed for a complex physics simulation development effort.
The primary tool used to build software components is called Babel and is used to
create language-independent libraries for high performance computers. Components
were constructed from legacy code and wrapped with a thin Python layer to enable
run-time scripting. Low-level components in Fortran, C++, and Python were
composed directly as Babel components and invoked interactively from a parallel
Python script.

Approved for public release; further dissemination unlimited

Preprint
UCRL-JC-140549

Component Technology
for High-Performance
Scientific Simulation
Software

T. Epperly, S. Kohn, and G. Kumfert

This article was submitted to the
Working Conference on “Software Architectures for Scientific
Computing Applications, International Federation of Information
Processing, Ottawa, Ontario, Canada, October 2-4, 2000.

October 2, 2000

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and shall
not be used for advertising or product endorsement purposes.

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be
made before publication, this preprint is made available with the understanding that it will not be cited or
reproduced without the permission of the author.

This report has been reproduced directly from the best available copy.

Available electronically at http://www.doc.gov/bridge

Available for a processing fee to U.S. Department of Energy
And its contractors in paper from

U.S. Department of Energy
Office of Scientific and Technical Information

P.O. Box 62
Oak Ridge, TN 37831-0062
Telephone: (865) 576-8401
Facsimile: (865) 576-5728

E-mail: reports@adonis.osti.gov

Available for the sale to the public from
U.S. Department of Commerce

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900

E-mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/ordering.htm

OR

Lawrence Livermore National Laboratory
Technical Information Department’s Digital Library

http://www.llnl.gov/tid/Library.html

COMPONENT TECHNOLOGY FOR
HIGH-PERFORMANCE SCIENTIFIC
SIMULATION SOFTWARE

�

TomEpperly, ScottKohn,andGaryKumfert
Centerfor AppliedScientificComputing

LawrenceLivermore NationalLaboratory

Livermore, CA,USA

tepperly@llnl.gov

skohn@llnl.gov

kumfert@llnl.gov

Abstract We are developing scientific software componenttechnologyto managethe
complexity of modern,parallel simulationsoftware and increasethe interop-
erability andre-useof scientificsoftwarepackages.In this paper, we describe
a languageinteroperabilitytool namedBabel thatenablesthecreationanddis-
tribution of language-independentsoftware libraries using interfacedefinition
language(IDL) techniques.We have createda scientific IDL that focuseson
the uniqueinterfacedescriptionneedsof scientificsoftware, suchascomplex
numbers,densemultidimensionalarrays,andparalleldistributedobjects. Pre-
liminary resultsindicatethat in addition to languageinteroperability, this ap-
proachprovidesusefultools for thedesignof modernobject-orientedscientific
softwarelibraries. We alsodescribea web-basedcomponentrepositorycalled
Alexandria thatfacilitatesthedistribution,documentation,andre-useof scien-
tific componentsandlibraries.

Keywords: componenttechnology, languageinteroperability, software repository, parallel
high-performancescientificsoftware

�
Work performedunder the auspicesof the U.S. Departmentof Energy by University of California

LawrenceLivermoreNationalLaboratoryunderContractW-7405-Eng-48.Work fundedby LLNL LDRD
grant00-SI-002andtheACTSprogramof theDOEOffice of Science.

1

2

1. MOTIVATION

Numericalsimulationsplay a vital role asa basicresearchtool for under-
standingfundamentalphysicalprocesses.As simulationsbecomeincreasingly
sophisticatedandcomplex, no singleperson—orevensingleinstitution—can
developscientificsoftwarein isolation.Developmentteamsrarelypossesssuf-
ficientresourcesandscientificexpertisein all requireddomainsto successfully
createacomplex applicationfrom scratch.Instead,physicists,chemists,math-
ematicians,andcomputerscientistsconcentrateondevelopingsoftwarein their
domainof expertise.Computationalscientistscreatesimulationsbycombining
theseindividual softwarepieces.

In collaborationwith theCommonComponentArchitectureforum [1], we
aredevelopingsoftwarecomponenttechnologyfor high-performanceparallel
scientificcomputing. The goal of this effort is to improve the software de-
velopmentprocessesof scientificcodesby usingproven techniquesandtech-
nologyfrom industry. Componenttechnologyaddressestechnologicalbarriers
to softwarere-useandintegration,suchasincompatibilitiesin programming
languages,interfacedescriptions,andphysicaldeployment.By removing such
barriers,componentapproacheswill allow computationalscientiststo concen-
trateon building moresophisticatednumericalsimulationsandreduceeffort
wastedintegratingincompatiblesoftware.

In this paper, we describeour recentwork in two areasof componenttech-
nology: languageinteroperabilityanda componentrepository. As partof our
languageinteroperabilityefforts, we aredevelopinga tool calledBabel to en-
ablethecreationanddistribution of languageindependentsoftwarelibraries.
To useBabel, library developersdescribetheir software interfacesin a Sci-
entific InterfaceDefinition Language(SIDL). Babel usesthis SIDL interface
descriptionto automaticallygenerate“glue code”thatenablesthesoftwareli-
brary to be calledfrom any supportedlanguage.We have alsodesignedand
implementeda prototypeweb-basedrepositorycalledAlexandria to encour-
agethe distribution and reuseof scientific computingsoftware components
andlibraries. Alexandria providesa convenientweb-baseddelivery system
andthuslowersthebarrierto adoptingcomponenttechnology.

This paperis organizedasfollows. Section2 surveys componenttechnol-
ogyapproachesfor scientificcomputinganddiscussesrelatedwork. Section3
discussesour languageinteroperabilityapproach,modificationsnecessaryfor
thescientificdomain,theBabel tool, andexperiencesusingBabel in a high-
performancescientificsoftwarelibrary. Section4 introducesthe Alexandria
web-basedcomponentrepositoryandits implementationarchitecture.Finally,
Section5 summarizesthe contributionsof this work anddiscussesfuture re-
searchdirectionsfor thescientificcomponentcommunity.

ComponentTechnologyfor ScientificSoftware 3

2. SCIENTIFIC COMPONENT TECHNOLOGY

Componenttechnology[25] isanextensionof object-orientedsoftwaretech-
nologythatfocusesontheissuesof softwareinteroperabilityandre-use.Com-
ponenttechnologyprovideslanguageindependence,compiler independence,
andseamlessaccessto distributedobjectresources.Componenttechnologyis
morethanobject-orientedapproaches,softwaremodules,scripting [3, 4], or
softwareframeworks[7, 8, 10,14]; however, componentapproachesdo make
useof theseotherrelatedtechnologies.A softwareframework maybecreated
within a componentarchitectureto addressa particularapplicationdomain.
Scriptinglanguagesmaybeusedasan integrationlanguageto connectexist-
ing softwarecomponents.

Industryhascreatedcomponenttechnologyto addressissuesof interoper-
ability dueto differentprogramminglanguages,thecomplexity of applications
developedusingthird-partysoftware,andthe incrementalevolution of large
legacy software. Thereare threecommoncomponenttechnologystandards
in the businesscommunity: COM [12], JavaBeans[24], and CORBA [19].
COM is Microsoft’s componentstandardthat forms the basisfor interoper-
ability amongall Windows-basedapplications.Microsoft recentlyintroduced
a new componentinitiative called.NET [18] thatcombinesideasfrom COM
and ������� andwill likely bethefutureof Microsoft technology. SunMicrosys-
temshasdevelopedJavaBeansand EnterpriseJavaBeans[23] basedon the
�����	� programminglanguage. CORBA, by the Object ManagementGroup
(OMG), is a cross-platformdistributed objectspecificationthat supportsthe
interactionof complex objectswrittenin differentprogramminglanguagesdis-
tributedacrossanetwork of computers.

ComponenttechnologiessuchasCORBA, COM, andJavaBeanshavebeen
very successfulin industry;unfortunately, they aredesignedfor the business
environmentanddonotaddressmany of theissuesassociatedwith large-scale
parallelscientificcomputing.For example,industryapproachesdonotaddress
datadistribution supportfor massively parallelSPMDcomponents.

We believe that a successfulcomponenttechnologyfor scientificsimula-
tion mustaddressfour issues:languageinteroperability, commoncomponent
behavior, physicaldeploymentstandards,andsupportfor distributedparallel
communication.Thework presentedin this paperaddressesonly a smallpart
of theoverall componenttechnologysolution.Communitycollaborative work
suchasthat by the CommonComponentArchitecture(CCA) [1] forum and
othersis essential.In thefollowing, we review relatedcomponenttechnology
work in thescientificcommunity.

BothCORBA [19] andCOM [12] addresslanguageinteroperabilitythrough
theuseof anInterfaceDefinitionLanguage(IDL). An IDL describestheinter-
faceof asoftwarecomponentusinganew descriptive languagethatis indepen-

4

dentof any particularprogramminglanguage.We follow a similar approach
in our languageinteroperabilitywork, which is presentedin Section3. IDL
technologyhastheadvantagethat,in somesense,all languagesareequal,and
any languagemay call any other language.The primary disadvantageof an
IDL approachis thatthedevelopermustwrite a separateinterfacedescription
of thesoftwarelibrary andthenmustfollow certainprogrammingconventions
thatmaptheinterfacedescriptioninto theprogramminglanguage.Automatic
wrappingapproachessuchas SWIG [3] or SILOON [17] supportlanguage
interoperabilitywithout requiringa separateIDL descriptionbut aretypically
limited to the caseof a scripting language(suchas
���
������) calling a com-
piled language(suchas � or �����). In contrast,IDL approachesallow method
invocationsin bothdirections.

Beyondlanguageinteroperability, componentarchitecturestypically require
thatall componentssupportsomecommonsetof behaviors. Commonbehav-
iors are importantfor the discovery of componentcapabilities(e.g., “What
interfacesdo youexport?”) requiredby GUI developmenttoolsandproblem
solvingenvironments[6, 13,20]. For example,theCCA specificationrequires
thatall CCA componentssupportthenotionof a port [1]. Portsdescribethe
interfacesusedby andprovidedby a component.Our IDL technologyplaysa
roleasa mechanismfor describingcomponentport interfaces.

Componentproblemsolving environments(PSEs)may also requirestan-
dardsfor describingthephysicaldeploymentof componentsoftware. For ex-
ample,CCAT [6] employs an XML [28] componentdeployment descriptor
thatenablesthePSEto understandcomponentports,port interfacetypes,plat-
form dependencies,andassociatedcomponentmetadata.Oneof thegoalsof
the Alexandria componentrepositorydescribedin Section4 is to provide a
commonrepositoryfor componentdescriptionsfor useby toolssuchasaPSE.

Unlike industryapproaches,scientificcomponenttechnologymustsupport
communicatingparallelcomponents.In mosthigh-performanceapplications,
componentswill communicatewithin the samememoryaddressspace,al-
thoughthecomponentsthemselvesmaybedistributedacrossprocessormem-
oriesin a SPMDfashion.Someapplications,however, will spanmultiple par-
allel computers.For example,a largesimulationrunningon thousandsof pro-
cessorsmay be connectedto a visualizationcomponentrunning on a small
visualizationenginewith a few tensof processors.In thiscase,thecomponent
architecturemustsupportsomeform of paralleldataredistribution. A num-
berof researchershave addressedthis issuefor certainlimited classesof data
types.Both PAWS [5] andCUMULVS [16] supportparallelredistribution of
arraysandotherpredefineddataitemssuchasparticlesor simpleunstructured
meshes.PARDIS [15] andCobra[22] supportdistributedsequencesandarrays
in CORBA. Weandothermembersof theCCA workinggroupareresearching

ComponentTechnologyfor ScientificSoftware 5

approachesfor extendingthis work to moregeneralscientificobjects,but that
work is preliminaryandbeyondthescopeof thispaper.

3. LANGUAGE INTEROPERABILITY TECHNOLOGY

Computationalscientistsdevelopinglarge simulationcodesoften facedif-
ficulties due to languageincompatibilitiesamongvarioussoftware libraries.
Scientificsoftwarelibrariesarewrittenin avarietyof programminglanguages,
including �	����
��	��� , � , ����� , or ascriptinglanguagesuchas
���
������ . Language
differencesoftenforcesoftwaredevelopersto generatemediating“glue” code
by hand. In the worst case,computationalscientistsmay needto re-write a
particularlibrary from scratchor notuseit atall.

We have developeda tool calledBabel that addresseslanguageinteroper-
ability andre-usefor high-performanceparallelscientificsoftware.Its purpose
is to enablethecreation,description,anddistribution of languageindependent
software libraries. In the following sections,we describeour interoperabil-
ity approach,theBabel tool architecture,andanexampleof usingBabel in a
parallellinearalgebrasoftwarelibrary.

3.1. SCIENTIFIC IDL

Babel addressesthelanguageinteroperabilityproblemusingInterfaceDef-
inition Language(IDL) techniques[12, 19]. An IDL describesthe calling
interface(but not the implementation)of a particularsoftware library. IDL
toolsusethis interfacedescriptionto generate“glue code” thatallows a soft-
ware library implementedin one supportedlanguageto be called from any
othersupportedlanguage.We have designeda ScientificInterfaceDefinition
Language(SIDL) that addressesthe uniqueneedsof parallelscientificcom-
puting. SIDL supportscomplex numbersanddynamicmulti-dimensionalar-
raysaswell asparallelcommunicationdirectivesthatarerequiredfor parallel
distributedcomponents.SIDL alsoprovidesothercommonfeaturesthat are
generallyusefulfor softwareengineering,suchasenumeratedtypes,symbol
versioning,namespacemanagement,andanobject-orientedinheritancemodel
similar to ������� .

As illustratedin Figure1, SIDL bearsa closeresemblanceto CORBA and
�����	� . The ���	��������� keyword introducesanew namespace.A namespacemay
containa class,interface,enumeratedtype, or anotherpackage.Classesand
interfacescontainmethods.Themethodsin an interfaceareabstract;that is,
they arenot implementedby theinterface.As in CORBA, !� , ��"	
 , and !����"	

modify methodargumentsand denotethe direction of information transfer.
SIDL alsosupports��������#���� -style documentationcomments,which may be
usedto automaticallygeneratebrowsabledocumentation(seetheAlexandria
discussionin Section4).

6

$&%('!)+*-,/.10&243&'+%65�798�:
;=<=<
<?>1@!ACB&DFE 243+%HG&%&)=I/'J*K3 E */,-.ML+,(' E 0+%FN=%/O�P/0&243&'+%4N ; %/O�PMQ+*CR&'+S('=2	7<4;
3+S&I-T+S(U&%V0&243&'+%HW

;&<=<
< N=I4,4G&%=P/X!%&I E ,-'+N ; I4,(G&%=PM'&%-3&'+%&)(%-. E)FSYO!S E 0!%/O!S E *(I4S=QF$&%&I E ,('	7<4;
*K. E %-'=L+S&I4%VX+%&I E ,('1W

X+%&I E ,('6I4Q4,-.!%�Z\[�:
$&,!*/G])=I(S&Q4%�Z^*C.MG&,-_=R�Q(%1S![�:
G=,-_=R�Q4%FG=, E Z^*K.HX!%&I E ,-'1`J[�:
$&,!*/G1S(`(3&2	Z^*K.MG=,-_=R�Q4%1S�ab*K.HX+%&I E ,('1`�[�:
*C. E U+% E=c Q4,-R!S=Q B *CO�%/.�)+*-,-.	Z^[�:
*C. E U+% E4D ,&I4S&Q B *CO�%-.!)+*-,-.�Z\[MQ4,&I(S&Q�:d

;&<=<
<Y> .MN&I4,4G=%=P=e-3!%-'+S E ,('&N ; I4,4G=%=P1O�S/3�)H,-.!%?$+%&I E ,-'f*K. E ,FS/.!, E 0!%-'1$+%&I E ,-'�7<4;
*K. E %-'=L+S&I4%1e/3!%('+S E ,('MW

$&,!*/G1S-343�Q-2	Z^*C.1X!%&I E ,-'1`	ag,-_ E X!%&I E ,-'F2J[�:d
;&<=<
<Yh 0�*()]*K. E %('=L+S=I4%F'+%-3&'+%=)4%-. E) E 0!%1I=Q4S=)=)F,(L]Q&*K.!%=S('HO!S-3=3�*K.=U!)�7<4;
*K. E %-'=L+S&I4% D *K.!%=S('&e-3!%('+S E ,('6%(` E %/.+G+)Fe-3!%-'+S E ,('MWd
;&<=<
< N=I4,4G&%=P @(E '4_�I E X!%&I E ,('+N ; I(,4G&%=Pi*-)HS?$+%=I E ,('1L+,-'M) E '4_!I E _&'+%(GFU='J*/G+)�7<4;
I=Q4S&)4) @(E '4_!I E X!%&I E ,('j*CO&3�Q(%/O�%-. E)4k=S&Q=QVX!%=I E ,('MW

S-'='+S(2+N+*K. E PFU+% E=c 0!,&) E=l %&Q=Q/mJ*/G E 0�Z\[�:d
;&<=<
<Yh 0!%1) E '(_�I E _&'&%4GHO�S E 'J*K`MI=Q4S&)4)M*CO&3�Q4%nO�%-. E)FS=Q=QH,-3!%-'+S E ,('1L(_=.�I E */,-.�)�7<4;
I=Q4S&)4) @(E '4_!I E4o S E 'J*n`j*CO&3�Q(%/O�%-. E)4k=S&Q=Q1e-3+%('+S E ,-'MW;4; O�% E 0+,4G+)?_�)4%(G E ,?R=_J*(Q(G1SH) E '4_�I E _&'+%4GHO�S E 'J*n`M,/O�* E=E %4Gd

d

Figure 1 A simplified SIDL interfacedescriptionfor portionsof the hypre software library
describedin Section3.3.

ComponentTechnologyfor ScientificSoftware 7

The following sectionsprovide additionaldetailsconcerningsomeof the
moreuniquecharacteristicsof theSIDL interfacedefinitionlanguage.

3.1.1 Symbol Versioning. In SIDL, every package,enumeratedtype,
class,andinterfaceis assigneda particularversionnumber. Every SIDL de-
scriptionbeginswith oneor more �	���qp� ���� statements.Each �	���qp� ���� state-
mentcontainsa packagenameandanarbitraryversionstring consistingof a
sequenceof integersseparatedby periods.All symbolswithin apackageshare
its versionnumber. For example,the �	���qp� ���� statementon the first line of
Figure1 statesthatall symbolsdefinedin the �	���	�	� packagewill beversion
1.0of thatsymbol.A �	����p� ���� statementis requiredfor every new outermost
packagedefinedin aSIDL description.A �	����p� ���� statementmayalsobeused
to give an explicit versionnumberfor resolvingexternalsymbolsreferenced
in a SIDL description. If a versionis not specifiedfor a particularexternal
symbol,thenthemostrecentversionof thatsymbolis used.

Symbol versioningis an importantconsiderationfor the developmentof
community-widestandardsandspecifications.Considera standardscommit-
teethat releasesversion1.0 of a particularspecification.Componentswill be
written to andimplementthat versionof the standard.Whenthe committee
releasesversion2.0 of the specification,somecomponentswill immediately
implementthe new standard,whereasotherswill take longer. Versioningre-
movesambiguityaboutwhichversionof thespecificationa particularcompo-
nentimplements.

3.1.2 Import. Like �����	� , SIDL supportsa typeof +r�������
 statement.
The +r�������
 statementaddsthe specifiedpackagenameto the symbol reso-
lution path. For example,a SIDL descriptionthat referencessymbol s	�	��
	���
in package�������	� couldeitherusethefully qualifiedname�	���	���ut^s����J
	��� or
begin with " +r�������
v�	���	��� " andthensimply usethe name s�����
���� (assum-
ing, of course,thatanothers	�	��
	��� did not alreadyexist in thatnamescope).
Externalsymbol referencesare resolved by searchingan associatedsymbol
repository, eitherafile repositoryor aweb-enabledrepositorysuchasAlexan-
dria.

3.1.3 Inheritance Model. The SIDL inheritancemodel is similar to
that of �����	� . SIDL supportsboth interfacesandclasses.The methodsin an
interfaceareabstractandthusnot implementedby thatinterface.Themethods
in a classmay be either abstractor implementedby that class. SIDL sup-
portsmultiple inheritanceof interfacesbut singleimplementationinheritance
of classes.An interfacemayextendotherinterfaces.A classmay implement
many interfacesbut extendonly oneotherclass.This inheritancemodelsim-
plifies the Babel implementationand removes the diamondimplementation

8

inheritanceambiguityassociatedwith ����� . Like COM [12], all classesand
interfacesimplicitly inherit from acommonbaseinterfacethatprovidesrefer-
encecountingandsimplequeryinterfacecapabilities.

Basedon suggestionsfrom our users,we have augmentedthe ������� inher-
itancesyntaxwith an &r	��w��Jr�����
qp�x���w�w keyword, which declaresthat theas-
sociatedclassimplementsall of the methodsin the specifiedinterface. This
keyword is equivalent to using the &r	��w��Jr����	
�p keyword and repeatingthe
definition of all interfacemethodsin the classbody. The &r	��w��Jr����	
�p�x���w�w
shorthandis cleanerandmorecloselyreflectsthewaymany of ourusersthink
aboutdesigningscientific libraries. They typically defineabstractinterfaces
that describethe desiredfunctionality and thencombinethoseinterfacesto-
getherinto classesandcomponentsthatimplementthatfunctionality.

3.1.4 Arrays. SIDL supportsthe style of dynamically-sized,dense,
multi-dimensionalarraysthatarecommonin scientificapplications.Existing
IDLs suchasCORBA [19] supportonly dynamically-sized,one-dimensional
arrays(a CORBA sequence)and statically-sized,multi-dimensionalarrays.
Densearraysconsistof onephysicalsegmentof memorythatcanbeaccessed
efficiently by anoptimizingcompiler. Sucharraysarecommonin thescientific
communitydueto its �	����
��	��� heritageandbecausedensearraysoffer better
accessperformancethan"arrayof array"implementations.

3.1.5 Parallelization Support. We have just begun to develop sup-
port for paralleldataredistribution in theBabel tools. Therefore,the follow-
ing discussionshouldbeconsideredpreliminary, althoughit doesindicateour
basicapproach. SIDL currently supportsparallel communicationdirectives
thatdescribemethodbehavior in a parallelexecutionenvironment.For exam-
ple, the w��	����w methodmodifierin classs����J
	��� of Figure1 indicatesthatthe
����
�y	������w�zq +r����{p� ���� methodis valid only wheninvoked on anobjectin the
samememoryaddressspace.For this method,thenumberof local vectorel-
ementsownedby a particularprocessorhasno meaningfor a s	�	��
	��� object
distributedacrossadifferentsetof processors.

Unlike PARDIS [15] andCobra[22], we do not intendto adddatadistribu-
tiondirectivesto theSIDL language.WedonotbelievethatstaticIDL datadis-
tribution directiveswill be sufficient to describethedynamiccomplexity and
wide rangeof parallelobjectsusedin scientificcomputing. Instead,we plan
to userun-timedatadescriptionsof dataobjects.Distributedparallelobjects
will berequiredto supportoneof a setof datadistribution interfacesthrough
which theobjectdescribesits internaldatadistribution state.TheBabel run-
time will usethat information to managedataredistribution during method
invocations.We feel this approachis moreappropriatefor sophisticateddata
decompositionsthatchangeduringthecourseof asimulation.

ComponentTechnologyfor ScientificSoftware 9

3.2. BABEL TOOL ARCHITECTURE

TheBabel tool suiteconsistsof anumberof separatepieces:aSIDL parser,
a codegenerator, a small run-timesupportlibrary, andthe Alexandria com-
ponentrepository. Currently, Babel supports�	����
��	���}|�| , � , and ����� ; we
plan to develop supportfor ������� ,
���
������ , ������
����J�}~�� , and �	����y���� in the
following year.

TheBabel parser, which is availableeitherat thecommand-lineor through
theAlexandria web interface,readsSIDL interfacespecificationsandgener-
atesan intermediateXML [28] representation.XML is a usefulintermediate
languagesinceit is amenableto manipulationby tools suchasa repository
or a problemsolvingenvironment. XML interfacedescriptionsarestoredei-
ther in a local file repositoryor on the web usingAlexandria. The vision is
thatascientistdownloadingaparticularsoftwarelibrary from theAlexandria
componentrepositorywill receive not only that library but alsothe required
languagebindingsgeneratedautomaticallyby theBabel tools.

TheBabel codegeneratorreadsSIDL XML descriptionsandautomatically
generatesglue codefor the specifiedsoftware library. This glue codemedi-
atesdifferencesamongcalling languagesandsupportsefficient inter-language
calls within the samememoryaddressspaceand,eventually, acrossmemory
spacesfor distributedobjects.Thecodegeneratorscreatefour differenttypes
of files: stubs,skeletons,Babel internal representation,and implementation
prototypes.TheBabel internalobjectrepresentationcreatedby thecodegen-
eratorsis similar to thatusedby COM [12], CORBA’s PortableObjectAdap-
tor [19], andscientific librariessuchasPETSc[2]. The internalobject rep-
resentationis essentiallya tableof functionpointers,onefor eachmethodin
anobject’s interface,alongwith otherinformationsuchasinternalobjectstate
data,parentclassesandinterfaces,andBabel datastructures.Stubandskele-
ton codetranslatesbetweenthe calling conventionsof a particularlanguage
andtheinternalBabel representation.Thecodegeneratorsalsocreateimple-
mentationfiles that containfunction prototypesto be filled in by the library
developers.To simplify the taskof library writers,we have addedautomatic
�����	���� �w�� generationaswell asa“codesplicing” capabilitythatpreservesold
editsduringtheregenerationof implementationfilesaftermodificationsto the
SIDL source.

3.3. TECHNOLOGY DEMONSTRATION IN HYPRE

In collaborationwith membersof thehypre developmentteam,we have in-
tegratedsomeof theBabel languageinteroperabilitytechnologyinto hypre [9].
Thehypre library is asuiteof parallelscalablelinearsolversandprecondition-
ers implementedin � with MPI. Therewere four primary goalsof this col-
laboration. First, the Babel teamwishedto demonstratethe technologyand

10

get feedbackfrom library developers.Second,thehypre projectneededauto-
maticallygenerated������
����J� bindingsthatwould trackchangesin thelibrary.
Previously, anumberof different�	����
��	��� bindingsweredevelopedby various
usersbut fell into obsolescencewith new changesto thehypre source.Third,
the hypre teamwantedto explore new designoptionsusing object-oriented
andcomponent-basedsoftwaretechniques,but theteamhadno desireto gen-
erateandsupportthenecessaryobject-orientedinfrastructureby hand.Finally,
hypre developerswantedto integratesoftwaredevelopedby othergroupswho
hadwrittencodein ����� and �	����
������ .

The collaborationbeganby identifying key partsof hypre anddeveloping
anobject-orienteddesignin SIDL for theprimaryhypre objects.For themost
part,existing hypre implementationswerewrappedusinggluecodegenerated
by theBabel tools. In spiteof this additionalintermediategluecode,parallel
runswith both �	����
��	��� and � drivers indicatethat Babel overheadsaretoo
smallto measureaccurately.

The developersof hypre identified a numberof advantagesto using Ba-
bel for their scientificsoftwarelibrary in additionto theobviousadvantageof
languageinteroperability. DevelopersfoundthatSIDL wasaconvenientspec-
ification descriptionlanguagefor the designof scientific librariesbecauseit
eliminatedunnecessaryimplementationdetailsandforcedthemto focusonthe
object-orienteddesignof thelibrary. They felt thatSIDL wasrelatively easyto
master, althoughsomewerenew to object-orienteddesignandobject-oriented
languages.Furthermore,hypre developersnoticedthat they could eliminate
redundantcodeby takingadvantageof polymorphism.For example,theprevi-
oushypre library containeda four differentpreconditionedconjugategradient
routines,eachwritten for a particulartype of preconditionerdatastructure.
Throughtheuseof polymorphismenabledby Babel, they wereableto reduce
thenumberof routinesto one. Finally, thehypre developerswereableto ex-
ploit object-orienteddesignin � , which hasno object-orientedsupport,using
theautomaticallygeneratedBabel code.

4. THE ALEXANDRIA REPOSITORY

TheAlexandria repositorywasdesignedandbuilt to facilitatetheadoption
of componenttechnologyfor high-performancescientificsimulationsoftware.
Our goal wasto provide a network servicewherecomponentdeveloperscan
publishtheirsoftwareandinterfacedefinitionsandwhereapplicationdevelop-
erscanfind anddownloadcomponentsandtheassociatedlanguagebindings.
The systemwasintendedto have a userinterfaceto supporthumanandma-
chineclients.

Alexandria providesahierarchicallyorganizedcollectionof softwarepack-
agesuploadedby componentdevelopers,afuzzysearchcapability, aninterface

ComponentTechnologyfor ScientificSoftware 11

definitionbrowser, anda webuserinterfaceto the Babel languageinteroper-
ability tool. For machineclients,Alexandria providesa repositoryof XML
interfacedefinitionsandwill holdarepositoryof sharedlibrarieswhich imple-
mentparticularinterfacesto enabledynamicgraphicalapplicationbuildersor
otherdevelopmenttools.

We choseto implementa webapplication(i.e., a webserver with dynamic
contentmanagedby a program)to achieve thesegoalsandfeatures.A web
applicationcanprovideasophisticatedandfriendly userinterfacedesignedfor
humanclientsanda simple,feature-richinterfacefor machineclients.By us-
ing webtechnologies,wemaketherepository’s servicesavailableto thelargest
possiblenetwork audience;any contemporarywebbrowsercanaccessAlexan-
dria. Machineclientscanusestandardnetwork librariesto accessthereposi-
tory. Othernetwork approacheswould requireinstallationof specialpurpose
clientsor moreelaboratemachineclientstherebydecreasingthepotentialau-
diencefor theservice.The HTTP protocolprovidesall the transactiontypes
necessaryfor therepository:uploadingfilesandotherinformationfrom auser
interfaceform anddownloadingcontent.The transactionalnatureof theweb
makestheuserinterfacelessinteractive thananative application,but theben-
efitsof thewebinterfaceseemto outweighthisdeficiency.

As shown in Figure2, Alexandria usesa three-tieredarchitecture:a web
browserbaseduserinterface,a web server with ������� servlets[11] andJava-
Server Pages[21], anda JDBC[26] connectionto anSQL backend. Theweb
server delegatesHTTP messagesfor certainURLs to ������� servlets,andthe
servletprovides the contentor an error response.A servletis a �����	� class
that implementsa standardinterfaceor overridesmethodsinheritedfrom a
standardbaseclass.Theservletcanuseall the featuresof the �����	� platform
in generatingits response.JavaServer Pagesis a convenient,dynamicway to
generatea servletwhich usuallycombinesHTML with embedded������� code
to provide thedynamiccontent.

TheAlexandria applicationconsistsof five subsystems:anaccesscontrol
system,aninexactstringmatchingpackage,a hierarchymanagementsystem,
a contentpackage,andaninterfaceto Babel. Theaccesscontrolsystemman-
agesuseraccountsandprovidesseveraldifferentlevelsof accessto thesystem:
administrator, trusteduser, normaluserandworld. Theinexactstringmatching
packageis aJava implementationof thealgorithmfrom �����	��� [30].

Thehierarchymanagementsystemprovidescataloging,uploadinganddown-
loadingfeatures.Unlikeanormalfile system,thehierarchycanholdfileswith
the samenamein a commondirectoryaslong asthey have differentversion
numbers.The expectationis that over time a projectwill issuemultiple ver-
sionsof individual files.

Thecontentscanningpackagechecksmaterialprovidedby usersto seeif it
is “safecontent.” A responsiblewebserverthatreceivescontentfromusersand

12

SQL
Database

J
D
B
C

Servlets

JSPs
J
a
v
a

Babel
tool

Server

Client-side
Babel

Interface tier Middle tier
SQL

backend

WWW browser

Figure2 Alexandriaarchitecture

thenpresentsthatcontentbackto otherusersmustverify thattheuserprovided
materialdoesnotcontainhostilescripts.Ratherthantrying to characterizeand
detecthostilecontent,Alexandria testsuserprovidedcontentagainstanXML
DTD thatcontainsasafesubsetof XHTML 1.0[27]. A validatingXML parser
is usedto determineif userprovided contentis safe. If thematerialdoesnot
validate,all themark-updirectivesaretransformedsothey will beinterpreted
asplain text ratherthanasmark-updirectives.

The interfaceto Babel subsystemprovides languagebindingsfor a SIDL
file to users.Theuser’sSIDL file is uploadedto thewebserver, thewebserver
runsBabel on thefile, theresultsarepackagedin a ����� file, andthentheuser
is giventhechanceto downloadthefile. Thissavesusersfrom having to install
Babel andaJava virtual machineon their localmachine.

Alexandria maintainsa repositoryof XML type information. Userswith
sufficient accesscantranslatetheSIDL file into anequivalentXML represen-
tationanduploadtheXML representationto the repository. Onceit is in the
repository, anyonerunningBabel canusetheXML informationfrom Alexan-
dria ratherthanhaving to explicitly downloadall the neededSIDL files. In
addition,thewebserver provideshighquality interfacedocumentationto web
browserby applyingXSLT [29], aevolving standardfor translatingXML into
HTML or othermarkuplanguages.

ComponentTechnologyfor ScientificSoftware 13

5. CONCLUSIONS

In this paper, we have describedtwo piecesof a componenttechnologyar-
chitecturefor scientificcomputing. Babel is a languageinteroperabilitytool
that usesthe SIDL interfacedescriptionlanguageto describecomponentin-
terfacesandto generatecodethatmediatesdifferencesbetweenprogramming
languages.Alexandria is a web-enabledcomponentrepositorythatprovides
abrowsablesoftwarelibrary, automatedaccessto SIDL typeinformation,and
webaccessto theBabel codegenerators.

Obviously, much work remainsin developing production-qualitycompo-
nent technologyfor the scientific computingcommunity. Membersof the
CommonComponentArchitectureworkinggrouphavemadesomeinitial prog-
ressin thisdirectionandhavedraftedaproposalthatcoverscommonbehavior
standardsfor components[1]. A numberof interestingopenresearchquestions
remainin extendingcurrentparalleldataredistribution approaches[5, 15,16,
22] to arbitrarydatacomponents.

Acknowledgments

We would like to thankAndrew Cleary, Jeff Painter, andCal Ribbensfor integrating the

Babel languageinteroperabilitytechnologyinto thehypre library andfor theirmany usefulsug-

gestions.Wewouldalsoliketo thankmembersof theCommonComponentArchitectureforum

for numerousin-depthconversationsaboutcomponenttechnologyfor scientificcomputing.

References

[1] R. Armstrong,D. Gannon,A. Geist,K. Keahey, S. Kohn,L. Curfman-
McInnes,S. Parker, andB. Smolinski. Toward a commoncomponent
architecturefor high performancescientificcomputing. In Proceedings
the Eighth International Symposiumon High PerformanceDistributed
Computing, 1999.See�	
�
����n������t/����t-p��J��#� ���t^�����	���b������x�������"�r .

[2] S. Balay, W. D. Gropp, L. Curfman-McInnes,and B. F. Smith. Effi-
cient managementof parallelismin objectorientednumericalsoftware
libraries.In E. Arge,A. M. Bruaset,andH. P. Langtangen,editors,Mod-
ern Software Tools in ScientificComputing, pages163–202.Birkhauser
Press,1997.See��
�
����n����������t�r���p�tn�J��w�tC�������J����
qp�� .

[3] D. Beazley. SWIGUsersManual. See��
�
����n����������t-p��� ���tC����� .

[4] D. M. Beazley andP. S. Lomdahl. Building flexible large-scalescien-
tific computingapplicationswith scriptinglanguages.In The8th SIAM
Conferenceon Parallel Processingfor ScientificComputing, 1997.

[5] P. Beckman,P. Fasel, W. Humphrey, and S. Mniszewski. Efficient
coupling of parallel applicationsusing PAWS. In Proceedingsof

14

the High PerformanceDistributed ComputingConference, 1998. See
�	
�
����n����������tn����w�tnw��J��w�tC�������������qp .

[6] R. Bramley, K. Chiu,C. Diwan,D. Gannon,M. Govindaraju,N. Mukhi,
B. Temko, and M. Yechuri. A componentbased servicesarchi-
tecture for building distributed applications. In Proceedingsof the
High PerformanceDistributed Computing Conference, 2000. See
�	
�
����n����������tK����
��	�Jr��ut/ ���#� �������tC��#�"���������
 .

[7] D. Brown, W. Henshaw, andD. Quinlan. Overture:An object-oriented
framework for solvingpartialdifferentialequationsonoverlappinggrids.
In Proceedingsof the First Workshop on Object Oriented Methods
for Inter-operable Scientificand EngineeringComputing, 1998. See
�	
�
����n����������tnw�w���w�tC�����	��������������������
�"��	� .

[8] K. G. BudgeandJ.S.Peery. ExperiencesdevelopingALEGRA: A C++
coupledphysicsframework. In Proceedingsof the First Workshopon
ObjectOrientedMethodsfor Inter-operable Scientificand Engineering
Computing, 1998.

[9] E. Chow, A. J.Cleary, andR. D. Falgout. Designof thehypre precondi-
tioner library. In Proceedingsof theFirst Workshopon ObjectOriented
Methodsfor Inter-operableScientificandEngineeringComputing, 1998.

[10] J. Cummings, J. Crotinger, S. Haney, W. Humphrey, S. Karmesin,
J. Reynders,S. Smith, and T. Williams. Rapid applicationdevelop-
ment and enhancedcode interoperability using the POOMA frame-
work. In Proceedingsof the First Workshopon ObjectOrientedMeth-
odsfor Inter-operableScientificandEngineeringComputing, 1998.See
�	
�
����n����������tn����w�tnw��J��w�tC��������������rq� .

[11] J.D. Davidson and D. Coward. Java ServletSpecification,v2.2. See
�	
�
����n������������t-p!"���t-���Jrq���	����#�"{�J
�p���p������	w���
�� .

[12] G. Eddonand H. Eddon. Inside Distributed COM. Microsoft Press,
Redmond,WA, 1998.

[13] D. Gannon,R. Bramley, T. Stuckey, J. Villacis, J. Balasubramanian,
E. Akman,F. Breg, S.Diwan,andM. Govindaraju.Componentarchitec-
turesfor distributedscientificproblemsolving. In IEEE Computational
ScienceandEngineering, 1998.

[14] R.HornungandS.Kohn.Theuseof object-orienteddesignpatternsin the
SAMRAI structuredAMR framework. In Proceedingsof theFirstWork-
shoponObjectOrientedMethodsfor Inter-operableScientificandEngi-
neeringComputing, 1998.See�	
�
����n����������tnw�w���w�tC�����	�������������������	��� .

[15] K. Keahey andD. Gannon. PARDIS: A parallelapproachto CORBA.
In Proceedingsof theSixthIEEE Symposiumon High PerformanceDis-
tributedComputation, 1997.

ComponentTechnologyfor ScientificSoftware 15

[16] J. Kohl andP. Papadopoulos.Efficient andflexible fault toleranceand
migration of scientificsimulationsusing CUMULVS. In SecondSIG-
METRICSSymposiumon Parallel and Distributed Tools, 1998. See
�	
�
����n����������tK����r�tK������w�tC�����	����p����!"�r�"�w���p�t��	
�rqw .

[17] Los Alamos National Laboratory. SILOON: Scripting Inter-
face Languages for Object-Oriented Numerics. Available at
�	
�
����n����������tn����w�tnw��J��w�tC�����	�	p� �w������ .

[18] Microsoft Corporation. Microsoft .NET Platform. Available at
�	
�
����n����������t9r� ��J�	��p�����
�t-����rq������
 .

[19] ObjectManagementGroup.TheCommonObjectRequestBroker: Archi-
tecture andSpecification. Availableat �	
�
����K����������tK��r���tC�����	�	��������� .

[20] S. G. Parker, D. M. Beazley, and C. R. Johnson. The SCIRunCom-
putationalSteeringSoftware System. E. Arge, A.M. Bruaset,andH.P.
Langtangen(Eds.), Modern Software Tools in Scientific Computing,
BirkhauserPress,1997.

[21] E. Pelegr«i-Llopart andL. Cable.JavaServerPagesSpecification:Version
1.1. See��
�
����n������������t(p+"���t/����r{�����	��#�"q��
�p�����p+��� .

[22] T. Priol, C. Ren«e,andG. All «eon.ProgrammingSCIclustersusingparal-
lel CORBA objects. In SCI-basedClusterComputing. SpringerVerlag,
1999.

[23] SunMicrosystems.EnterpriseJavaBeansServer-SideComponentArchi-
tecture. See��
�
����n������������t(p+"���t/����r{�����	��#�"���
qp�������� .

[24] SunMicrosystems.JavaBeansComponentArchitecture Documentation.
See��
�
����n������������t(p!"���t/���Jrq�����	��#�"{�J
�p��������	���	�����{p���#�����p .

[25] C. Szyperski.ComponentSoftware: BeyondObject-OrientedProgram-
ming. Addison-Wesley, 1998.

[26] S.White andM. Hapner. JDBC2.1API. SunMicrosystems,Inc., 1999.
Availableat �	
�
����n������������t-p!"���t-���Jrq���	����#�"q�J
qp�����#��q��� .

[27] World Wide Web Consortium. TheExtensibleHypreText Markup Lan-
guage. See��
�
����n����������t�������tK�����	������������
�r�w .

[28] World WideWebConsortium.ExtensibleMarkupLanguage (XML). See
�	
�
����n����������t\�	����tK�����	�� ���y .

[29] World WideWebConsortium.XSLTransformations(XSLT) Version1.0,
1999.Availableat �	
�
����K����������t\����tK�����	����������p�w�
	� .

[30] S.Wu andU. Manber. Fasttext searchingallowing errors.Communica-
tionsof theACM, 35(10):83–91,1992.

Approved for public release; further dissemination unlimited

Preprint
UCRL-JC-140349

Divorcing Language
Dependencies from a
Scientific Software Library

S. Kohn, G. Kumfert, J. Painter, and C. Ribbens

This article was submitted to the
10th SIAM Conference on Parallel Processing, Portsmouth, VA,
March 12-14, 2001.

March 12, 2001

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and shall
not be used for advertising or product endorsement purposes.

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be
made before publication, this preprint is made available with the understanding that it will not be cited or
reproduced without the permission of the author.

This report has been reproduced directly from the best available copy.

Available electronically at http://www.doc.gov/bridge

Available for a processing fee to U.S. Department of Energy
And its contractors in paper from

U.S. Department of Energy
Office of Scientific and Technical Information

P.O. Box 62
Oak Ridge, TN 37831-0062
Telephone: (865) 576-8401
Facsimile: (865) 576-5728

E-mail: reports@adonis.osti.gov

Available for the sale to the public from
U.S. Department of Commerce

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900

E-mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/ordering.htm

OR

Lawrence Livermore National Laboratory
Technical Information Department’s Digital Library

http://www.llnl.gov/tid/Library.html

“babel-pp”
2000/12/12
page1�

�

�

�

�

�

�

�

Divorcing Langua ge
Dependencies from a
Scientific Software
Librar y

�

S. Kohn � , G. Kumfert � , J. Painter � , and C. Ribbens �

1 Intr oduction
In scientific programming,the never-endingpushto increasefidelity, flops, andphysics
is hitting a major barrier: scalability. In the context of this paper, we do not meanthe
run-timescalabilityof codeon processors,but implementationscalabilityof numbersof
peopleworkingonasinglecode.With thekindsof multi-disciplinary, multi-physics,multi-
resolutionapplicationsthat are hereand on the horizon, it is clear that no single code
group— nor any singleorganization— hasall therequiredexpertiseor time availableto
independentlycreateall of thesoftwareneededto solvetoday’scutting-edgecomputational
problems.

Scientificprogramminglibrarieshavealleviatedsomeof thispressurein thepast,but
scalingproblemsarebecomingincreasinglyapparent.Theupshotof softwarelibrarieshas
beenthatdifferentcodegroupsin differentorganizationscanbring their expertiseto bear
on particularsub-problems.Unfortunately, different groupsand different organizations
alsobring with themimplicit dependencieson differentsoftwaredevelopmentplatforms,
differentprogramminglanguages,anddifferentconceptualmodelsof theproblemdecom-
position— all of which mustberesolvedif thelibrariesthey produceareto beusefulin a
final application.Thegoodnews is thatscientificcomputingis not alonein thesesoftware
scalabilityproblemsandseveral industrysolutionshave provensuccessful.Thebadnews
�
This work wasperformedundertheauspicesof theU.S.Departmentof Energy by University of California

LawrenceLivermoreNationalLaboratoryundercontractNo. W-7405-Eng-48.UCRL-JC-140349�
Centerfor Applied ScientificComputing(CASC),LawrenceLivermoreNationalLaboratory�
Departmentof ComputerScience,Virginia Tech& on sabbaticalat theCenterfor Applied ScientificCom-

puting(CASC),LawrenceLivermoreNationalLaboratory

1

“babel-pp”
2000/12/12
page2�

�

�

�

�

�

�

�

2

F77

Java
 Matlab

C

Python

F90

C++
 Native

JNI

Mex

Swig

Vendor Specific

IOR

F77

Java
 Matlab

C

Python

F90

C++

(a) (b)

Figure 1. Languageinteroperability without(a), andwith (b) IDL techniques

is thatscientificcomputingis differentenoughin its naturefor an“off-the-shelf” solution
from industryto not quitefit thescientificcomputingdomain.

This paperdescribesthe ideas,process,andresultsof the first year in an ongoing
collaborationbetweenmembersof the ComponentsProjectandthe Hypre Projectin the
Centerfor Applied ScientificComputing(CASC) in LawrenceLivermoreNationalLabo-
ratory. TheComponentsProjecthasdevelopeda tool calledBabelthataddresseslanguage
interoperabilityandre-usefor high-performanceparallelscientificsoftware.Its purposeis
to enablethecreationanddistributionof languageindependentsoftwarelibraries.Hypreis
a parallel,scalablescientificlibrary of linearsolversandpreconditioners.By usingBabel
tools on Hypre in this collaboration,we found that Babelenablesbettersoftwaredesign
andis aneffective tool for producinglanguageindependentscientificsoftwarelibrariesat
anegligible performanceoverhead.

2 SIDL
It is alreadyvery commonin scientific computingto have libraries written in different
languagesinteroperate.Considerthe commoncaseof BasicLinear AlgebraSubroutines
(BLAS) written in Fortran77andinvokedfrom C/C++. Althoughvendorshave provided
customsolutionsfor this problemfor years,this solutionhasscalingproblemsfor general
libraries.First, BLAS areoftentunedspecificallyfor thetargetarchitecture.Second,glue
codehasto be written for C/C++ to call the Fortran subroutines.Third, the Fortran77
standarddoesnot definethebinarycalling interfacebetweenC/C++andFortran77,sothe
wrappersarealsovendorspecific.

Many programminglanguagescancall otherlanguages,but only on a pairwiseba-
sis.Thesepairsoftenrequiresignificanteffort (meaningwrappersor “glue code”),arenot
guaranteedto beportable,andmay requirespecialinterconnecttechnology. This is illus-
tratedin Figure1(a).For instance,Matlabcanbecoaxedto run anexternallibrary written
in C, but to do someanswriting specialMex-Files. GettingMatlabto run a Pythonscript
natively is anothermatterentirely.

In large, multidisciplinary scientific applications,we are increasinglyobservinga
needfor truly languageindependentpiecesof software.Onecaneasilyenvision anappli-
cationwith Java or Tcl/Tk graphicaldisplays,Pythonscriptsdriving thehighestlevelsof

“babel-pp”
2000/12/12
page3�

�

�

�

�

�

�

�

3

logic, Fortranlinear algebraroutines,solverswritten in C, andthe adaptive meshrefine-
mentand time-steppingmanagementinfrastructurewritten in C++. Suchan application
wouldbealmostimpossibleusingthetechnologyrepresentedin Figure1(a).

Thisproblemis addressedin industryusingcomponenttechnologiessuchasCORBA
andCOM. In both cases,languageinteroperabilityis achievedusingInterfaceDefinition
Languages(IDLs).

The ComponentsProjecthasdesigneda Scientific InterfaceDefinition Language
(SIDL) that addressesthe particularneedsof parallel scientific computing. SIDL sup-
portscomplex numbersanddynamicmulti-dimensionalarraysaswell asparallelization
attributesandcommunicationdirectivesthat are requiredfor generalparalleldistributed
datastructures,all of which arelackingfrom industryIDLs. SIDL alsoprovidesotherfea-
turesthataregenerallyusefulbut notnecessarilyrelatedto scientificcomputing,suchasan
object-orientedinheritancemodelsimilar to Java, namespacemanagement,andinterface
versioning.

SIDL is not a “lowest-common-denominator”solution betweenprogramminglan-
guages.SIDL supportsfull object-orientedprogramming,evenin nonobject-orientedlan-
guages. It implementsreferencecountinganddynamictype casting,even in Fortran77
which hasno aliasingandlimited typecastingthroughequivalencestatements.

3 Babel
The Babel tool suitetakesthe SIDL descriptionsanda language/platformdescriptionof
a softwarelibrary andgeneratesall of the glue-codeon demand.It consistsof a number
of interrelatedpieces:a SIDL parser, a codegenerator, a small run-timesupportlibrary,
anda softwarerepository. Currently, BabelsupportsFortran77,C, andC++; efforts are
underwayto supportJava,Python,Fortran90,andMatlab.

The Babelparser, which is availableeitherat the command-lineor througha web
interface,readsSIDL interfacespecificationsandgeneratesan intermediateXML repre-
sentation. XML is a useful intermediatelanguagesinceit is amenableto manipulation
by tools suchasa web-basedrepositoryor a GUI developmentenvironment. XML in-
terfacedescriptionsarestoredlocally or in a sharedweb-basedsoftwarerepositorycalled
Alexandria1. Thevision is thata scientistdownloadinga particularsoftwarelibrary from
the repositorywill receive not only that library but also the requiredlanguagebindings
generatedautomaticallyby theBabeltools.

TheBabelcodegeneratorreadsXML files andgeneratesgluecodefor linking from
a softwarelibrary to an intermediateobjectrepresentation(IOR), andfrom theIOR to the
applicationprogrammer’s languageof choice(seeFigure1(b)). This glue codemediates
differencesamongcalling languagesandsupportsefficient inter-languagecallswithin the
samememoryaddressspace.TheIOR usedby thecodegeneratoris similar to thatusedby
COM, CORBA’s PortableObjectAdaptor, or by scientificlibrariessuchasPETSc[2, 3].
TheIOR handlesthevirtual functiondispatchfor all themethodsin anobject’s interface,
maintainsthe object’s statedata,and managessomeinternal Babel datastructuresand
metadata.

1Also developedin theComponentsProject,but beyondthescopeof this paper.

“babel-pp”
2000/12/12
page4�

�

�

�

�

�

�

�

4

hypre library

MPI

official hypre
�
interface (ANSI C)

Babel interface

(optional)

�

C++
 Python
F77

Figure 2. Theoriginal visionof hypreandBabel

4 Hypre-Babel Collaboration
Hypre[5] is a suiteof scalableparallellinearsolversandpreconditionersfor thesolution
of large,sparselinearsystemsof equationsondistributed-memoryparallelcomputers.The
primaryalgorithmicemphasisin Hypreis onrobustnessandscalableparallelperformance.
In addition,importantdesigngoalsfor thelibrary includeeaseof use,flexibility , therapid
incorporationof new algorithms,andcompatibilityandinteroperabilitywith othersimilar
libraries.Thesegoalsandemphasesaredrivenby theneedsof themostdemandingscien-
tific simulationcodes,astypifiedby theU.S.Departmentof Energy’sAcceleratedStrategic
ComputingInitiative(ASCI).

ThecollaborationbetweenHypreandBabelbeganby identifying four primarygoals
anda vision of how thetwo projectsinteract.Thefour primarygoalsare:

1. TheBabelteamwantedto demonstratethetechnologyandgetfeedbackfrom library
developers.

2. TheHypreprojecthadanimmediateneedfor automaticallygeneratedFortranbind-
ings thatwould trackchangesin thelibrary. Futureneedsfor bindingsto otherlan-
guages(e.g.,Python)wasconsideredextremelylikely. Previously, a numberof dif-
ferentFortranbindingsweredevelopedby varioususersonvariousplatformsbut fell
into obsolescencewith new changesto theHyprelibrary.

3. Hypredeveloperswantedto integratesoftwaredevelopedby othergroupswho had
writtencodein C++ andFortran.

4. The Hypre teamwantedto explore new designoptionsusing object-orientedand
component-basedsoftwaretechniques,but the teamhadno desireto generateand
supportthe necessaryobject-orientedinfrastructureby hand. This includeda de-
sire to participatein the EquationSolver Interface(ESI) working group[6], which
requiresworking implementationsto verify proposeddesigns.

The original vision of how Babelwasto interfaceto Hypre is shown in Figure2. Hypre
makesa cleardistinctionbetweentheir “official” (meaningpublishedandsupported)pro-

“babel-pp”
2000/12/12
page5�

�

�

�

�

�

�

�

5

interface Vector {
int Clear();
int Copy(in Vector x);
int Clone(out Vector x);
int Scale(in double a);
int Dot(in Vector x, out double d);
int Axpy(in double a, in Vector x);

};

interface Operator {
int Apply(in Vector x, out Vector b);

};

interface LinearOperator extends Operator {
};

interface Solver extends LinearOperator {
int GetSystemOperator(out LinearOperator op);
int GetResidual(out Vector resid);
int GetConvergenceInfo(in string name, out double value);

};

interface PreconditionedSolver extends Solver {
int GetPreconditioner(out Solver precond);

};

interface RowAccess extends LinearOperator {
int GetRow(in int row, out int size,

out array<int,1> col_ind,
out array<double,1> values);

};

Figure 3. SIDLdefinitionof somebasicHypre interfaces.Not all methodsareshown.

gramminginterfacein ANSI C andthelibrary properwhich wassubjectto morefrequent
changeduring thecourseof research.Theoriginal expectationwasto supplyanoptional
Babelinterfaceto supportotherlanguagesasthey cameon line.

Dueto theoverallsizeof Hypre,ourinitial focuswasondesigningandimplementing
a Babelinterfacefor a representative subsetof the library. We developeda SIDL file that
matchedtheprogramminginterfacesof this Hypresubsetwhile adheringto SIDL’s object
model. We thengeneratedthe glue codebetweenHypre and the Babel IOR, andhand-
editedtheimplementationdetailsto finish thenew language-independentlibrary.

SIDL’s object-modelfollows thatof Objective-CandJava, usingclassesand inter-
faces. For C++ programmers,interfacesaresimilar to classesexceptthatall methodsare
purevirtual, meaningthey have no implementation.In this model,a classcaninherit an
implementationfrom only oneclass,but mayinherit multiple interfaces.Figure3 showsa
SIDL definitionof severalkey interfacesin theHypreobjecthierarchy.

“babel-pp”
2000/12/12
page6�

�

�

�

�

�

�

�

6

Table 1. Runtime(in seconds)for a SMGmultigrid solveron a 	�

��	�
���	�

structuredmeshwith a sevenpoint stencilon ASCI-BluePacific

setup solution
standardHypreC interface 8.07 43.08
standardHypreC interface 8.07 42.96
Babel-generatedC interface 8.09 42.45
Babel-generatedC interface 8.05 42.76

5 Results
Weareverypleasedandencouragedby theresultsof thiscollaborationbetweenthetwo re-
searchgroups.Theperformanceandinteroperabilityresultswerein line with expectations.
Additionally thereweresomeunexpectedresultsthatwereverypositiveandconstructive.

Negligib le Runtime Overhead. Resultsof four runsof astandardHypretestproblem
arereportedin Table1. ThetestproblemusesHypre’sSMGmultigrid solveron aPoisson
equationin threedimensions,finite-differencedonaseven-pointstencil,onauniform 	�
��
	�
���	�
 structuredmesh.Thetimingsweremeasuredusingeightprocessorson two nodes
of ASCI Blue-Pacific, a largesystembasedon IBM RS/6000.The timesreportedarethe
sumof the timesof the eight processors.Most of the manipulationthrougheithersetof
interfacesis doneduringthesetupphase.Thesolutionphaseis practicallyentirelywithin
theHyprelibrary proper.

It is clearto seein thisexamplethattheoverheadof usingtheBabelinterfaceis well
within thenoiseof thesystem.Moreover, it is reassuringto seethatBabelcanbeaddedto
existingMPI basedSPMDcodewithout ruining parallelperformance.

Reduced Code Size Through Polymorphism. SomeHypreimplementationsproved
to be unnecessaryoncethe SIDL definedinterfaceswereavailable. For example,it was
easyfor theHypreteamto write genericimplementationsof commonsolvers.Givendefi-
nitionsof interfacessuchasVector , LinearOperator , andRowAccess , it is natural
to implementKrylov solverssuchasconjugategradientandGMRESin termsof thesein-
terfaces.Thesesolverscanthenwork with any concreteclassesthatimplementtherequired
interfaces.Thereis no longera needto write andmaintainmultiple versionsof common
solvers,onefor eachmatrix datatype.

Originally, Hypreincludedeightimplementationsof PCG(preconditionedconjugate
gradient),someof themalmostidenticalexcept for how they handledthe matrix-vector
multiply, becauseof data-structuredifferences. To take advantageof Babel’s polymor-
phismcapabilities,we codeda PCGsolver which exclusively usedtheBabelinterfaceto
manipulatevectors. We have Babel interfacesfor two vector typesso far, so this PCG
solver effectively replacestwo separateimplemenationsin the Hypre library. Likewise
Hypredevelopershave similarly beenableto reducethenumberof GMRES(generalized
minimal residual)solvers.

“babel-pp”
2000/12/12
page7�

�

�

�

�

�

�

�

7

Table 2. Runtime(in seconds)for a SMGmultigrid solveron a ��
�����
�����

structuredmeshwith a sevenpoint stencilon SunSparcstationUltra 10

setup solution
standardHypreC interface 0.14 0.26
Babel-generatedF77interface 0.14 0.27

Hypredevelopersinvolvedin thiscollaborationfeel thatusingBabelwill allow users
to get the benefitsof object-orienteddesignwithout requiringobject-orientedlanguages
suchasC++,which is muchlessportablethanC.

Automatic Langua ge Bindings. Babelwasusedto generateaFortraninterfaceto the
sameHyprelibrary (which is written in ANSI C). We ransomeof thesametestproblems
from a Fortrandriver andobtainedthesamenumericalresultson a Sunworkstation.This
successfullydemonstrateda key goalto theHypredevelopers.PreviousFortraninterfaces
haverequiredfrequentmaintenanceandlackedportability.

We presentin Table2 someruntimeresultsthat againshow no real differencebe-
tweentheperformancethroughtheHypreandBabelinterfaces.This wasdoneon a single
processorSunworkstationusinga smallerversionof theproblemin theprevioussection.

Hypredevelopersinvolvedin thiscollaborationareconfidentthatanapplicationcode
written in termsof a particularsetof interfacescoulduseany solver or library that imple-
mentsthoseinterfaces,with virtually nochangeto theapplicationcode.Userscouldeasily
experimentwith usingdifferentsolver librariesby simply replacingonelibrary’s imple-
mentationof therequiredinterfaceswith anotherlibrary’s implementation.

Explore New Design Options. In additionto thebasicHypreobjectsdefinedby the
interfacesshown in Figure 3, a secondset of interfaces,called builder interfaces,were
developedandplaysa role of increasingimportance.A builder interfaceis a setof meth-
odsfor constructingoneor morebasicobjectsandfollows theBuilder designpattern[7].
Thesebuildershave no concreteanalogin theHypre library andareexclusively available
throughtheBabelinterface.A majorbenefitof thebuildersis thatusersarepreventedfrom
accessingpartiallyconstructeddatastructures.

The most interestingexamplesare the MatrixBuilder andSolverBuilder
interfaces.A MatrixBuilder canbe thoughtof asa particularuserinterfacethrough
which usersdefineproblems. EachMatrixBuilder is accompaniedby a Vector-
Builder for building compatiblevectors.A SolverBuilder is usedto setthecompo-
nentsandparametersthatdefinea Solver . Partial SIDL definitionsof builder interfaces
aregivenin Figure4.

SIDL as a Design Langua ge. To generateinterfacecodeBabelrequiresa SIDL file
definingtheinterfaces.This forcedtheHypredevelopersto considertheuserinterfaceas
a separateissuefrom the implementation,andprovidedanautomatedmechanismto keep

“babel-pp”
2000/12/12
page8�

�

�

�

�

�

�

�

8

interface MatrixBuilder {
int SetMap(in Map map);
int Setup();
int GetConstructedObject(out LinearOperator obj);

};

interface StructuredGridMatrixBuilder extends MatrixBuilder {
int Start(in StructGrid grid, in StructStencil stencil,

in int symmetric, in array<int,1> num_ghost);
int SetValue(in array<int,1> where, in double value);
int SetBoxValues(in Box box, in array<int,1> stencil_indices,

in array<double,1> values);
};

interface IJMatrixBuilder extends MatrixBuilder {
int Start(in MPI_Com com, in int m_global, in int n_global);
int SetLocalSize(in int m_local, in int n_local);
int SetRowSizes(in array<int,1> sizes);
int InsertRow(in int n, in int row,

in array<int,1> cols,
in array<double,1> values);

};

interface SolverBuilder {
int Start(in MPI_Com comm);
int SetParameterDouble(in string name, in double value);
int SetParameterInt(in string name, in int value);
int SetParameterString(in string name, in string value);
int Setup(in LinearOperator A, in Vector b, in Vector x);
int GetConstructedObject(out Solver obj);

};

interface PreconditionedSolverBuilder extends SolverBuilder {
int SetPreconditioner(in Solver precond);

};

Figure 4. Examplesof Builder interfacesin Hypre. Not all methodsare shown.

thecodeconsistentwith theuserinterfacedesign.Therewasno opportunityto clutter the
interfacewith quick, one-timehacks. The resultwasa morestableandpredictableuser
interface.

Thesimplicity of theSIDL file madeit themostconvenientlanguagefor Hyprede-
velopersto useto discussuserinterfacedesign. We could limit our discussionto pure
interfaceissueswhile remainingconfidentthatwhateverwecameupwith wouldbepracti-
cal. SIDL wasaneasylanguageto pick upand(unlikeUML) waseasyto write up in email
andsendto collaborators.

“babel-pp”
2000/12/12
page9�

�

�

�

�

�

�

�

9

Impr ovements to SIDL. The Hypre interfaceprojectalso provided useful feedback
to the Babelproject. Our experiencewith practicaluseof Babel led to several features
andtools which now make Babeleasyto use. Onecommonmistake that wasmadewas
confusionover how to make a concreteclass,i.e. onefor which all the inheritedvirtual
functionshaveanimplementationto handlethecalls. It waseasyfor classesto inherita lot
of interfaces,andthewriter of theSIDL file to forgetto addasinglemethodsignaturethat
wassupposedto be implementedonly to find thatBabelcreatedanabstract,not concrete
class.

To correctthe situation,SIDL wasmodifiedin two ways. First, the keyword “ab-
stract” wasaddedto classesthat may have unimplementedmethods. If a methodis left
unimplementedandthe classis not declaredabstract,thereis an error. Additionally, the
keyword “implements-all” was added. If a classinherits an interfacethrougha regular
implementsdirective,it overridesonly thosemethodsexplicitly mentionedin theclassdef-
inition. If theinterfaceis inheritedthroughan“implements-all”directive,all themethods
of the interfaceareexpectedto be overriddenby theclassandwriting the methodcall in
theclassdefinitionbecomesredundant.

Impr ovements to Babel Tools. Basedonobservingtheuseof theBabeltoolsandin-
terviewswith theHypredevelopersinvolved,two featureswereaddedto improveusability:
automaticmakefilegeneration,andpreservationof usereditsto generatedcode.

EvenonasmallSIDL file, theBabeltoolscangenerateasurprisingnumberof header
andsourcefiles, often in variouslanguages.TheBabelcodegeneratorsweremodifiedso
that a makefile fragmentis generatedin eachdirectorywherecodeis generated.These
makefile fragmentsdefinemacrosthatlist therelevantfilenamesandaresuitablefor inclu-
sioninto largermakefiles.

In additionto thegluecodethattheBabeltoolsgenerate,they alsogeneratesocalled
Impi fileswith emptyfunctionbodies.Developersof new librariesmaywantto build their
implementationdirectly in thesefiles,but developersof legacy librariesusethis asa place
to simplydereferencepointersandcall theirown code.Weaddedfunctionalityto theBabel
tools so that if the SIDL file waschangedincrementally, theseeditsto the Impl files are
preserved.This improvementhassavedHypredevelopersasignificantamountof cut-and-
paste.

Revised Hypre Architecture . At theendof oneyearof aHypre-Babelcollaboration,
anew visionis emergingabouttheHyprearchitectureasshown in Figure5. In thisnew de-
sign,theHyprelibrary will dependon theBabelruntimelibrary to provideobject-oriented
supportthroughouttheentirehyprelibrary, not just theBabelinterfaces.Additionally, all
thepublishedinterfaces,includingtheANSI C interfacewill beprovidedwith Babel.

Thedesignin Figure5 representsamajorshift in theHyprelibrary andhasyet to be
finally decided.TheBabeldevelopersareparticularlypleasedthat thoughthis collabora-
tion, Hypredevelopershavedevelopedsomuchenthusiasmfor Babeltools.

“babel-pp”
2000/12/12
page10�

�

�

�

�

�

�

�

10

Babel runtime

hypre library

MPI

ANSI C

Babel interface

(required)

C++
 Python
F77

Babel Runtime

Figure 5. Therevisedvisionof hypreandBabel

6 Conc lusions and Future Work
Babeldid thelanguageinterfacingjob it hadbeendesignedfor, atnocostto theHypreuser
andgreatadvantageto Hypredevelopers.TheHypre-Babelcollaborationled to improved
codes,andmethodologiesfor bothgroups.

In the long term, Hypre plansto increaseits relianceon the Babel tools andmay
eventuallybedistributedwith pregeneratedinterfacesfor severallanguagesandplatforms,
anda BabelLiteruntimelibrary. In this configuration,it is entirelypossiblethat theusers
of thelibrary don’t evenhaveto beawarethatthey areusingBabelaswell. Membersof the
Hypre teamalsoplan to continueparticipationin the EquationSolver Interface(ESI) [6]
workinggroup,developingstandardsfor linearsolver interfaces.

Babel continuesto mature. Work is constantlybeing doneto supportadditional
languagesand platforms. Much of the currentresearchwithin the ComponentsProject
at LLNL is focusedon handlingparallel remotemethodinvocationsanddataredistribu-
tion in a languageindependentmanner. TheComponentsProjectalsomaintainscloseties
to a larger, grass-rootsinitiative calledthe CommonComponentArchitecture(CCA) Fo-
rum [1, 4]. The goal of the CCA is to bring moderncomponenttechnologyto scientific
computing.TheBabeltoolsaretargetedto providethelanguageindependenceto theCCA.

As scientificapplicationsbecomemoreinterdisciplinarytheneedfor interoperability
betweendifferentlibrariesandamongpiecesfrom differentlibrariesbecomesevenmore
important.An importantquestionis how a Babel/SIDLskincaneasilybewrappedaround
existinglibraries.TheHypredevelopersfeel thatif theexistinglibrary wasreasonablywell
organized(evenif not usinganexplicit OO language)theeffort is reasonable,theruntime
costsnegligible, andthepotentialpayoff in increasedinteroperabilityhuge.

“babel-pp”
2000/12/12
page11�

�

�

�

�

�

�

�

Bib liograph y

[1] R. ARMSTRONG, D. GANNON, A. GEIST, K. KEAHEY, S. KOHN, L . MCINNES,
S. PARKER, AND B. SMOLINSKI, Toward a commoncomponentarchitecturefor high-
performancescientificcomputing, in Eighth IEEE Int’ l Sym. on High-Performance
DistributedComputing,RedondoBeach,CA, August1999.alsoLawrenceLivermore
NationalLaboratorytechnicalreportUCRL-JC-134475,June1999.

[2] S. BALAY, W. D. GROPP, L . C. MCINNES, AND B. F. SMITH, Petsc: Theportable
extensibletoolkit for scientificcomputing. http://www.mcs.anl.gov/petsc .

[3] , Efficient Managementof Parallelism in Object-OrientedNumericalSoftware
Libraries, BirkhauserPress,1997,pp.163–202.

[4] CommonComponentArchitecture (CCA)Forum .
http://z.ca.sandia.gov/˜cca-forum .

[5] E. CHOW, A. CLEARY, AND R.FALGOUT, Designof thehyprepreconditionerlibrary,
in ObjectOrientedMethodsfor InteroperableScientificandEngineeringComputing,
M. E. Henderson,C. R. Anderson,andS. L. Lyons, eds.,SIAM, Philadelphia,PA,
1999,pp.106–116.

[6] EquationSolverInterface(ESI)Working Group .
http://z.ca.sandia.gov/esi .

[7] E. GAMMA , R. HELM , R. JOHNSON, AND J. VLISSIDES, DesignPatterns:Elements
of ReusableObject-OrientedSoftware, AddisonWesley ProfessionalComputingSe-
ries,AddisonWesley Longman,1995.

11

Approved for public release; further dissemination unlimited

Preprint
UCRL-JC-148723

A Component Architecture
for High-Performance
Computing

D. E. Berhholdt, W. R. Elwasif, J. A. Kohl, and T. G. W.
Epperly

This article was submitted to the
Workshop on Performance Optimization for High-Level Languages
and Libraries (POHLL-02), New York, NY, June 22, 2002.

June 22, 2002

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and shall
not be used for advertising or product endorsement purposes.

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be
made before publication, this preprint is made available with the understanding that it will not be cited or
reproduced without the permission of the author.

This report has been reproduced directly from the best available copy.

Available electronically at http://www.doc.gov/bridge

Available for a processing fee to U.S. Department of Energy
And its contractors in paper from

U.S. Department of Energy
Office of Scientific and Technical Information

P.O. Box 62
Oak Ridge, TN 37831-0062
Telephone: (865) 576-8401
Facsimile: (865) 576-5728

E-mail: reports@adonis.osti.gov

Available for the sale to the public from
U.S. Department of Commerce

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900

E-mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/ordering.htm

OR

Lawrence Livermore National Laboratory
Technical Information Department’s Digital Library

http://www.llnl.gov/tid/Library.html

A Component Architecture for High-Performance Computing∗

David E. Bernholdt, Wael R. Elwasif, and James A. Kohl
{bernholdtde,elwasifwr,kohlja}@ornl.gov

Computer Science and Mathematics Division
Oak Ridge National Laboratory

P. O. Box 2008
Oak Ridge, TN 37831-6367 USA

Thomas G. W. Epperly
tepperly@llnl.gov

Center for Applied Scientific Computing
Lawrence Livermore National Laboratory

P. O. Box 808
Livermore, CA 94551 USA

Abstract

The Common Component Architecture (CCA) provides a means for developers to manage the complexity of
large-scale scientific software systems and to move toward a “plug and play” environment for high-performance
computing. The CCA model allows for a direct connection between components within the same process to maintain
performance on inter-component calls. It is neutral with respect to parallelism, allowing components to use what-
ever means they desire to communicate within their parallel “cohort.” We will discuss in detail the importance of
performance in the design of the CCA and will analyze the performance costs associated with features of the CCA.

1 Introduction

In some ways, high-performance scientific computing is a victim of its own success. The ability to simulate physical
phenomena in a scientifically useful way leads to demands for more sophisticated simulations with greater fidelity
and complexity. At the same time, the supercomputers on which such simulations are run grow ever more powerful,
but simultaneously more complex. Obtaining maximum performance from modern supercomputers requires careful
algorithm design, including management of multiple levels of the memory hierarchy. Combining the support of a
range of modern supercomputer architectures with the increasing demands from the scientific side of the problem can
lead to nearly unmanageable complexity in the software created for modern computational science.

The computer science community is exploring a variety of approaches to help alleviate some of the complexity of
large-scale scientific software. Libraries or computational engines may be created with algorithms and/or algorithmic
parameters optimized for the target computer system. While this approach focuses on performance issues, it may
also provide some help with complexity, since in many cases algorithms are abstracted and parameterized to cover
a range of computer systems. Domain-specific, high-level languages can greatly simplify the scientist’s view of the
scientific programming problem, but typically a scientist will rely on a large and complex infrastructure of libraries,
computational engines, or generated code in more traditional programming languages. This approach shifts much of
the complexity to the development of the libraries, engines, or tools, but once again to the extent these tools embody
important (often domain-specific) abstractions and generalizations, they can further reduce the complexity of the
overall software system.

∗Research supported by the Mathematics, Information, and Computational Sciences Office, the Office of Advanced Scientific Computing Re-
search, and the U. S. Department of Energy under contract no. DE-AC05-00OR22725 with UT-Battelle, LLC, and W-7405-Eng-48 with the
University of California. LLNL report UCRL-JC-148723

1

Even with the benefit of such techniques, high-performance simulation software tends to be large and complex.
Moreover, there is much “legacy” software in the scientific community which cannot, for technical or practical reasons
(i.e., time or funding), be rewritten to the extent required to accommodate these high-level approaches. Consequently,
it is valuable to look at other ways to help scientific programmers manage the complexity of their software systems.

One such approach which has become very popular and successful in other areas of computing, most notably the
“business” and “internet” areas, is component-based programming. Components may be thought of as objects that
encapsulate useful units of functionality and interact with other components only through well-defined interfaces. To
the extent that these interfaces are specified in such a way as to be broadly useful to a community (i.e., scientific
domain) rather than a specific program, the component approach can facilitate reuse and interoperability of code.
Component-based applications are typically constructed by connecting the required components together in a software
framework; creating a complex scientific application could become a matter of assembling components to express the
“physics” of the problem and coupling them with numerical solvers and other components to form the complete
software package. As component-based programming for scientific computing develops, we can anticipate that many
of the components required for a given application would already have been created by experts in the relevant domains
and made available through a component repository.

The Object Management Group’s CORBA [19], Microsoft’s COM and DCOM [29], and Sun’s Enterprise Jav-
aBeans [22] are examples of very popular component environments in the business and internet areas. Visualization
systems such as Advanced Visualization System’s AVS [31], OpenDX (derived from IBM’s Data Explorer) [6], and
VTK [10] also have a component flavor to them, with the connections between components typically representing data
flow. Unfortunately, these environments do not address the requirements of high-performance scientific computing in
various ways and have seen very limited use in scientific computing. Efforts by computational scientists to develop
component environments [9, 13–16, 20, 26–28] have been mostly focused on specific problem domains, and tend to
lack the generality and flexibility needed for use by a much broader user base.

In response to this situation, a grassroots effort was launched by researchers in several U.S. national laboratories
and universities to create a component environment suited to the general needs of high-performance scientific com-
puting. The resulting Common Component Architecture (CCA) [2] is now at the prototype stage and is being adopted
by a wide variety of scientific computing projects.

2 An Overview of the Common Component Architecture

In the design of the CCA, a number of requirements were considered:

• Performance: It should impose a negligible performance penalty.

• Portability: It should support languages and platforms of interest in scientific computing.

• Flexibility: It should support a broad range of parallel programming paradigms, including SPMD, multi-
threaded, and distributed models.

• Integration: It should impose minimal requirements for existing software to be able to participate in the com-
ponent environment.

The specification [1] developed by the CCA Forum defines:

• minimal required behavior for a CCA component,

• minimal required behavior for a CCA framework, and

• the interface between components and frameworks,

in such a way as to allow the above requirements to be satisfied, but, to the extent possible, without dictating specific
solutions.

At the heart of the CCA is the concept ofports, through which components interact with each other and with the
framework. Ports are merely interfaces that are completely separate from all implementation issues. They correspond
to interfacesin Java, orabstract virtual classesin C++. CCA ports follow a uses-provides design pattern, so that each
component must declare what ports itusesfrom others, and the ports for which itprovidesan implementation. This

2

typically occurs in the component’ssetServices method, which is invoked by the framework when the component
is instantiated.setServices is the only method a CCA component is specifically required to implement.

A CCA framework is primarily a container for components being assembled into an application, which mediates
the interconnection of ports. Its primary interaction with the component is through theServices interface, which
allows components to register (used or provided) ports, and to get those ports for actual use. A design goal for the
framework is to be able to cast as components even functionality that might be thought of as fundamental frame-
work services. The details of such services are still evolving to some extent, but include things like event services,
and “builder services,” which provide the capabilities to load/unload components and to connect/disconnect ports.
Currently both command-line and graphical means are provided to allow the user to assemble CCA applications.

During execution, when one component needs to use methods provided by a port on another component, it uses the
getPort method of theServices interface to obtain a reference to the port, which can in turn be used to invoke
the methods provided by the port. The using component callsreleasePort when the port is no longer needed. The
framework, through theServices object, mediates the invocation of methods provided by other components and
is important in allowing the CCA to provide both high performance for “local” components and remote access in the
case of distributed components; this will be explained in more detail below.

Another aspect of the CCA is the desire to make the use of components independent of their implementation lan-
guage. To achieve this, we have adopted the Babel language interoperability tool [4]. A Scientific Interface Definition
Language (SIDL) is used to generate the necessary glue code between languages. SIDL is also used by the CCA
Forum to express the interfaces in the CCA standard. Babel currently supports C, C++, Fortran 77 (F77), Python, and
client-side Java, with support for server-side Java and Fortran 90 planned.

The CCA specifications do not dictate implementation issues, such as exactly how calls are made from one com-
ponent to another, but the model has been designed in such a way as to allow the implementation of highly efficient
methods, preserving the innate performance of the environment. It is also worth noting that the specification says
nothing specifically about parallelism. The basic philosophy in this matter is for the CCA environment to “stay out of
the way” of parallelism. Performance matters are described in more detail in the next section.

3 Performance Considerations in the CCA

3.1 The CCA Framework

The CCA’s uses-provides pattern for ports, in which the framework mediates the use of one component by another,
is central to both the flexibility and performance of the model for inter-component calls. When a using component
invokesgetPort , the Port object returned by the framework might be a proxy for invocation of methods on a
remote component in a distributed computing environment. In this case, it is up to the framework to marshal and
unmarshal the arguments and make the remote invocation, and components on either end need not know they exist
in a distributed environment. Of course, distributed computing is not usually considered to be a high-performance
environment, and the CCA user creating the application is well advised to consider the frequency of use and the
volume of data transfer in ports when setting up the application in a distributed environment.

In the case that both components are local, thegetPort call might return a reference to the actual implementation.
This is done, for example, in the prototype Ccaffeine framework [11], which focuses on supporting high-performance
parallel CCA applications and is written in C++. Components (in the form of shared object libraries) are loaded
into distinct namespaces within a single address space (process). The use of different namespaces ensures that the
components cannot interfere with each other, and the framework is the only part of the environment which can “see”
all components. Since components are all in a single address space, the framework can easily return a direct reference
to the port’s implementation fromgetPort . This is referred to as adirect connectionenvironment, and allows one
component to call methods on another with a cost equivalent to a C++ virtual function call — essentially, a lookup of
the method in the component’s function table, followed by invocation of that function.

SincegetPort calls occur infrequently (they are required only once per used port), their cost is negligible. The
overhead of the CCA framework is almost entirely due to the cost of inter-component calls relative to the equivalent
calls in a native language environment. Since this overhead is on the order of the cost of a native language function
call, it will not play a significant role in a great many inter-component calls — most scientific software is designed
to put a reasonable amount of work in each function — nor will it effectintra-component calls. For those rare cases
where the overhead imposed by the CCA framework is an unavoidable concern, we characterize the costs below.

3

3.2 Language Interoperability via Babel

With the use of Babel for language interoperability, as is now being introduced into the CCA environment, some
additional overhead is introduced. Babel uses a C-based internal object representation (IOR) to provide the glue
between different languages. In general, the overhead is roughly two subroutine calls. The client calls a stub routine
that translates the arguments into C. The stub routine calls the skeleton routine which translates the arguments into the
implementation language, and the skeleton calls the implementation. In some cases there is an additional overhead
due to data conversions between languages (especially with character strings), and with existing code, the developer
might need to insert an additional layer to adapt from the object-based representation used by Babel to the style of the
existing code. As might be expected, when reasonable amounts of computation take place in the methods called via
Babel, the overhead of the Babel system is not noticeable [21]. Obviously somewhat more care is required in using
Babel with methods that might be called a large number of times and involve little work.

Babel is distinctive from other language interoperability tools because it provides bi-directional function calls. For
example, a Python program can call a F77 subroutine that calls a C++ function that calls something implemented in
Python. This flexibility comes at a cost. The software developer must write a SIDL file to describe the interfaces that
will be accessible from multiple languages. There is also a runtime overhead that will be quantified below.

Babel was designed with the CCA in mind, but it can also be used without the CCA framework. Babel can be used
to wrap legacy applications and libraries to provide a high-level, language-independent interface. The code wrapped by
Babel can use native function calls in whatever the implementation language happens to be. When Babel is integrated
with a CCA framework, the overhead of the “full” CCA environment is equivalent to the overhead of Babel — the
framework’s virtual function call is simply carried out in the Babel environment.

3.3 Parallelism

The final performance issue, and perhaps the most important for modern scientific computing, is that of parallelism. As
noted, the CCA’s primary approach to parallelism is staying out of the way of the parallelism built into the components.
In a parallel environment, the CCA framework mediates interactions between components in the same process, just
as it does in the sequential case. Interactions among parallel instances of a component in different processes (referred
to as acohort) are up to the developer of that component. Components may use whatever parallel communication
environment they prefer (i.e., MPI [5,18,30], PVM [7,17], Global Arrays [12,23,24], shared memory), and different
components may even use different systems. The framework itself essentially does not know it is running in parallel,
apart from the need in some cases to initialize the communication system — a dependence we plan to shift into
a separate component shortly. Because the framework is, in effect, embarrassingly parallel, we will not concern
ourselves with scalability measurements in this paper.

4 Performance Measurement Techniques

To characterize the performance overheads in CCA-based environments, we measured a variety of simple subroutine
and function calls in native C, C++, and F77, in the C++-based Ccaffeine CCA framework, the C++-based omniORB
CORBA environment, and in nine language combinations using Babel (C, C++, and F77 as calling language and called
language). The functions were intended to illustrate the cost of calls passing a single variable of various data types.
The complete list of functions and the environments in which they were tested is shown in Table 1. The functions are
divided into several groups to simplify presentation and analysis of the results:

A: those for which Babel types map directly to native language types,

B: additional “simple” functions which show significantly different costs from group A in certain languages,

C: those requiring some measure of adaptation between languages in Babel and therefore show greater variation in
cost, and

D: remaining functions, mostly those which are relevant only to object-oriented environments, such as Babel and
(in some cases) C++.

Some of the function or arguments require a brief explanation:

4

Table 1: Measurements of function call overheads were obtained with a variety of arguments, corresponding to basic
datatypes of the languages as well as additional special types introduced by Babel. This table details the languages
and environments (Native, Babel, Ccaffeine, omniORB) in which each type was tested. Group designations are used
to simplify the analysis.

C C++ F77
Group Function/Argument N B N B C O N B
A Double Y Y Y Y Y Y Y Y

Float Y Y Y Y Y Y Y Y
Int Y Y Y Y Y Y Y Y
Long Y Y Y Y Y Y Y Y

B no arguments Y Y Y Y Y Y Y Y
no args., returns double Y Y Y Y Y Y Y Y

C Array Y Y Y Y Y Y Y Y
Bool Y Y Y Y Y Y Y Y
Complex (by reference) Y Y Y Y
Complex (by value) Y Y Y Y Y Y Y
Double Complex (by reference) Y Y Y Y Y Y Y
Double Complex (by value) Y Y Y Y Y Y Y
OrderedArray Y Y Y Y Y Y Y Y
String (by reference) Y Y Y Y Y Y
String (by value) Y Y Y Y Y Y Y Y

D Char Y Y Y Y
Interface Y Y Y Y Y Y
no args. (static call) Y Y Y Y
Double (static call) Y Y Y
createReference/deleteReference Y Y Y Y

• Array and OrderedArray: Babel’s array object allows arrays to be declared specifically as row major or column
major (“ordered array”) or to be defined implicitly by the strides through memory. Ordered arrays require
additional checking as they are passed, and may require translation from the ordering in which they are presented
into the ordering requested by the callee. In our tests, no translation was required.

• Static calls: Tests the difference between invoking functions in their static forms, i.e.,Class::function() ,
rather than via an object pointer, i.e.,object ptr->function() .

• createReference/deleteReference: Tests the cost of Babel’s reference counting mechanisms.

In the case of native C++ and Babel, both concrete and virtual function calls were tested.
Because the total duration of an empty function call (where the function merely returns, doing no work) is so short,

our approach was to measure the cost of repeatedly calling the function within a loop relative to the cost of a matching
empty loop. We used a range of iteration counts (1,000 to 8,192,000 by factors of 2) to ensure that our measurements
scaled appropriately, and at each iteration count we took the minimum time from ten consecutive trials. While efforts
were made to minimize the interference with these timing runs by running in single-user mode with a minimum
of operating system services active, some interference is inevitable. The per-call overheads we report represent an
average over the 14 different iteration counts and we estimate that they are generally reliable to±10%. Because the
overhead of any specific application function call will depend on the function’s arguments, and our primary interest
in these timings is the costs of the CCA environmentrelative to the native language costs, we do not consider the
observed variability to be a serious issue.

Measurements were carried out on a 500 MHz Pentium III (Coppermine) Dell Latitude CSx laptop running De-
bian’s “unstable” GNU/Linux distribution and 2.4.18 Linux kernel. Version 2.95.4-15 of the GNU compiler toolchain
was used, along with Ccaffeine version 0.3, Babel version 0.7.1 (a prerelease of 0.7.2), and omniORB version 3.0.4.
The-O2 flag was used to optimize all compiled code. Thegettimeofday system function was used for the timing.
This function returns wall clock time rather than CPU utilization, asgetrusage does, but tests showed that despite

5

Table 2: Actual timings for F77 function calls and relative costs for other environments. Results represent the average
across the group or the range (minimum–maximum) where there is significant variation (>∼ 10%) within the group.

F77 C C++ Babel C to C Ccaffeine OmniORB
Function Group Time (ns) Rel. F77 Rel. F77 Rel. F77 Rel. F77 Rel. F77
A 18 1.0 1.2 2.6 2.4 91.1
B 10–16 1.0–2.2 2.4–3.8 3.2–3.9 3.5 130.8
C 18 1.1 1.1–3.7 2.1–14.4 2.2–4.3 90.8
Overall Average 17 1.1 1.8 3.8 2.8 97.6

Table 3: Timings for Babel interlanguage function calls, relative to the Babel C to C and native F77 timings, according
to the function groupings in Table 1. Results represent the average across the group or the range (minimum–maximum)
where there is significant variation (>∼ 10%) within the group.

Calling Called Timing Rel. Babel C to C Timing Rel. F77
Lang. Lang. A B C D Avg. A B C Avg.
C C 1.0 1.0 1.0 1.0 1.0 2.6 3.2–3.9 2.1–14.4 3.8
C++ C 1.3 1.3–1.5 1.5–45.3 1.3–7.2 4.9 3.5 4.0–5.8 4.0–21.6 6.3
F77 C 1.0 1.1 0.94–33.6 0.91–1.1 4.3 2.7 3.4–4.1 2.5–41.2 7.3

C C++ 1.5 1.5 1.7–41.1 1.5–13.7 6.9 3.9 4.7–5.8 4.6–57.5 12.2
C++ C++ 1.9 1.8 2.2–84.3 1.9–20.4 10.8 4.9 5.4–7.6 6.2–56.5 14.5
F77 C++ 1.6 1.5–1.8 1.7–70.9 1.8–14.510.0 4.1 5.9 5.2–91.8 15.3

C F77 1.6 1.7 1.0–90.1 1.8 8.9 4.1 6.1 3.9–61.1 10.3
C++ F77 1.8 2.2 1.5–132 2.2–8.1 12.8 4.9 7.1–8.3 5.8–65.6 13.3
F77 F77 1.7 1.6–2.1 1.0–121 1.8–2.2 12.2 4.4 6.5 4.4–103 14.2

reporting times down to the microsecond, the Linux implementation ofgetrusage had a resolution of only 10 ms,
whereas testing indicatedgettimeofday provides 2µs resolution.

5 Results and Discussion

5.1 Native Language Results

Table 2 displays the per-call function costs for calls in the C, C++, and F77 native language environments. Within a
language, variation among the single-argument functions is generally small. In C, we represented complex values by
structures, and when passed by value, these cost roughly 1.2× most of the other C or F77 function calls. Also, the C
function with no arguments that returned a double cost 2.2× the Group A result. In C++, the function calls with no
arguments (with and without a return value), and those with boolean and string arguments, were relatively expensive,
from 2.4×–3.8× the corresponding F77 timings. The C++ results shown are for concrete function calls; virtual calls
are uniformly twice as expensive, and because of its implementation, are represented by the Ccaffeine results.

5.2 Babel

Table 3 shows the costs of various interlanguage calls within the Babel environment. Because there are a number of
function calls possible in the Babel environment that are not possible in the native environment, we present results
relative to both native F77 and the Babel C to C timings. All results are for concrete function calls. Virtual function
calls in Babel have essentially the same cost, 1.02× the concrete call, averaged over all functions and all language
combinations. Given the significant variations seen in some of the timings, the overall averages presented can be
considered only as a very rough guide for comparisons — it is important to consider both the languages involved and
the function arguments when comparing Babel results.

6

Table 4: Costs for individual Group C functions (see Table 1) for various language combinations in the Babel envi-
ronment. Costs are relative to the Babel C to C results. For each column, the top label is thecalling language and the
bottom label is thecalled language.

C C++ F77 C C++ F77 C C++ F77
C C C C++ C++ C++ F77 F77 F77

Argument Time (ns) Time Rel. Babel C to C
Array 44.3 3.8 1.0 8.7 11.4 8.7 1.6 4.6 1.8
Bool 43.7 2.5 1.9 2.2 3.3 2.7 2.4 3.5 3.0
Complex (by value) 49.8 1.5 1.2 1.7 2.3 1.9 1.6 4.0 1.5
Double Complex (by reference) 45.0 3.0 1.1 2.3 5.8 3.1 1.6 4.0 1.5
Double Complex (by value) 57.3 2.2 0.94 1.9 3.5 1.7 1.6 3.3 1.5
OrderedArray 255 1.5 1.0 1.7 2.2 1.7 1.0 1.5 1.0
String (by reference) 43.8 45.3 33.6 41.1 84.3 70.9 90.1 132 121
String (by value) 39.0 1.9 19.5 27.3 26.8 43.5 29.0 31.5 49.2

We can see that calls involving C tend to be the least expensive. This is not surprising, given Babel’s interal object
representation is implemented in C. Calls involving C++ tend to be the most expensive, because Babel tries to provide
arguments as close as possible to the native language form, and C++ requires the most adaptation. We see that Group
A and B functions are generally fairly consistent in cost across the various language combinations, at most 2.2× the C
to C cost. Groups C and D show rather large variations in timing and are largely responsibly for driving up the overall
average figures. In analyzing the relative costs of functions in Group C especially, it is important to consider them
individually — the overall averages, or even the Group C ranges given, can be no more than a very rough guide.

Table 4 shows details of the costs of Group C functions. The most striking feature of these results is tremendous
variation in the cost of passing strings, either by value or by reference. This is because in most cases, Babel must
allocate new space (viamalloc) and copy the string as part of adapting it from one language to the other. Most other
functions show trends much more in line with the results for Groups A and B, though there are certain cases where the
required adaptations are somewhat more expensive.

It is also worth noting that, thus far, development of Babel has focused almost entirely on correctness of the im-
plementation and on expanding the base of languages supported — little effort has gone into optimization. Therefore,
we can anticipate improvements in some of these results.

5.3 Native Languages, CCA, and CORBA

In addition to the native language results previously discussed, Table 2 shows the cost of various function calls in
the Ccaffeine CCA framework, the Babel environment calling from C to C, and the omniORB CORBA framework
relative to the native F77 timings.

As previously noted, an inter-component function call in a direct connect CCA framework, such as Ccaffeine, is
equivalent to a C++ virtual function call. The cost is roughly 2.8× the cost of a native F77 function call.

Taking full advantage of the CCA environment — using Babel integrated into a CCA Framework — calls would
incur the cost of a virtual function call in the Babel environment, which is practically identical to the cost of a concrete
function call.

To gauge the cost of the CCA environment relative to a typical CORBA environment, we also present timings for
same-process calls using omniORB. Timings were quite consistent within each group, and the overall average is that
the CORBA calls take 97.6× a native F77 call. This is 34.9× the cost of calls in the Ccaffeine CCA framework, and
roughly 25.7× the cost of the stand-alone Babel or full CCA (Babel integrated into a framework) environments.

As discussed earlier, these overheads will noticeably effect only the small fraction of functions which are called
many times and contain very little work. These results can be used by software architects and component developers
to help gauge which functions, if any, are likely to require special consideration in the design of their interfaces. A
variety of options are available, depending on the specific situation. For example, if performance is more important
than language interoperability, it may be desirable to eliminate the Babel layer for selected component interfaces. If
there is flexibility in the overall architecture, it might be modified to make the sensitive function calls intra-component
rather than inter-component, thus eliminating the framework overhead. It is worth noting that CORBA does not

7

provide this kind of flexibility to developers.

6 The Future of the CCA

The CCA is currently at the stage of a highly functional prototype environment. The specification is nearly complete
and is more than adequate to enable serious scientific simulations to be developed. A number of prototype frameworks
exist, each focusing on different environments (i.e., parallel, distributed, etc.). A variety of mini-applications have
been demonstrated using these frameworks, abstracted from real scientific simulations [25], and more than 15 groups
have already adopted the CCA as the basis for new terascale scientific simulations which are now under development.

Development of the CCA continues and is accelerating, thanks especially to the formation of the Center for Com-
ponent Technology for Terascale Simulation Software (CCTTSS) [3] with funding from the U. S. Dept. of Energy’s
Scientific Discovery through Advanced Computing (SciDAC) initiative [8]. The CCTTSS, a subset of the CCA Fo-
rum that includes participants from six national laboratories and two universities, carries out research in component
technology for high-performance computing and will develop the CCA into a full production-quality environment.

One focus area of the Center is the development of a suite of components based on popular numerical and other
libraries in order to “seed” the development of a component-rich environment. Related to this is the the development
of domain-specific “standard” interfaces to facilitate the creation of reusable and interoperable components. As such
activities are best undertaken by experts in the relevant domain, the role of CCTTSS and the CCA Forum is primarily
to encourage and promote the formation of communities around such efforts. Efforts are already underway to develop
interfaces for basic scientific data objects, such as distributed arrays, structured and unstructured meshes, and adaptive
mesh refinement.

Another focus of the CCTTSS, and one with more performance considerations, is the development of general
interfaces and tools for parallel data redistribution, especially for the case of coupling parallel models running on
differing numbers of processors. While the initial implementation of this capability will be based on components,
there is longer-term interest in doing this at the framework level through more expressive interfaces able to capture the
desired parallel semantics, leading to what might be termedparallel remote method invocation.

7 Conclusions

The CCA provides a means for developers to manage the complexity of large-scale scientific software systems, and
to move toward a “plug and play” environment for high-performance computing. The CCA model allows for adirect
connectionbetween components within the same process, maintaining performance on inter-component calls. It is
neutral with respect to parallelism, allowing components to use whatever means they desire to communicate within
their parallelcohort. The current prototype CCA environment is being used to create serious scientific simulations, and
is also being refined toward production quality. Performance concerns will continue to be central to the development
of the CCA.

8 Acknowledgments

The CCA has been under development since 1998 by the CCA Forum and represents the contributions of many people,
all of whom are gratefully acknowledged.

This work has been supported by the U. S. Dept. of Energy’s Scientific Discovery through Advanced Computing
initiative, through the Center for Component Technology for Terascale Simulation Software, of which LLNL and
ORNL are members.

References

[1] CCA Documents.http://www.cca-forum.org/documents/ .

[2] CCA Forum home page.http://www.cca-forum.org .

8

[3] Center for Component Technology for Terascale Simulation Software (CCTTSS) home page.http://www.
cca-forum.org/ccttss/ .

[4] Components @ LLNL: Babel.http://www.llnl.gov/CASC/components/babel.html .

[5] Message Passing Interface (MPI) Forum home page.http://www.mpi-forum.org .

[6] Open Visualization Data Explorer.http://www.opendx.org .

[7] PVM: Parallel Virtual Machine.http://www.csm.ornl.gov/pvm/ .

[8] Scientific Discovery through Advanced Computing (SciDAC) home page.http://www.science.doe.
gov/scidac/ .

[9] Sierra home page.http://www.cfd.sandia.gov/sierra.html .

[10] VTK home page.http://public.kitware.com/VTK/ .

[11] Benjamin A. Allan, Robert C. Armstrong, Alicia P. Wolfe, Jaideep Ray, David E. Bernholdt, and James A.
Kohl. The CCA core specification in a distributed memory SPMD framework.Concurrency and Computation:
Practice and Experience, in press.

[12] Global Array Toolkit home page.http://www.emsl.pnl.gov:2080/docs/global/ .

[13] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith. Efficient management of parallelism in object oriented
numerical software libraries. In E. Arge, A. M. Bruaset, and H. P. Langtangen, editors,Modern Software Tools
in Scientific Computing, pages 163–202. Birkhauser Press, 1997.

[14] David L. Brown, Geoffrey S. Chesshire, William D. Henshaw, and Daniel J. Quinlan. OVERTURE: An object-
oriented software systems for solving partial differential equations in serial and parallel environments. In Michael
Heath, Virginia Torczon, Greg Astfalk, Petter E. Bjørstad, Alan H. Karp, Charles H. Koebel, Vipin Kumar,
Robert F. Lucas, Layne T. Watson, and David E. Womble, editors,Proceedings of the 8th SIAM Conference on
Parallel Processing for Scientific Computing. Society for Industrial and Applied Mathematics, 1997. (Published
only on CD-ROM).

[15] Edmond Chow, Andrew J. Cleary, and Robert D. Falgout. Design of the HYPRE preconditioner library. In
Michael E. Henderson, Christopher R. Anderson, and Stephen L. Lyons, editors,Object Oriented Methods for
Inter-operable Scientific and Engineering Computing, pages 106–116. Society for Industrial and Applied Math-
ematics, 1999.

[16] John de St. Germain, Steve Parker, John McCorquodale, and Chris Johnson. Uintah: A massively parallel prob-
lem solving environment. In9th IEEE international Symposium on High Performance Distributed Computing
(HPDC-9, 2000), pages 33–42. IEEE Computer Society, 2000.

[17] Al Geist, Adam Beguelin, Jack Dongarra, Weicheng Jiang, Robert Mancheck, and Vaidyalingam S. Sunderam.
PVM: Parallel Virtual Machine. MIT Press, November 1994.

[18] William Gropp, Steven Huss-Lederman, Andrew Lumsdaine, Ewing Lusk, Bill Nitzberg, William Saphir, and
Marc Snir.MPI: The Complete Reference, volume 2 – The MPI-2 Extensions. MIT Press, September 1998.

[19] Object Management Group. OMG’s CORBA website.http://www.corba.org .

[20] S. Karamesin, J. Crotinger, J. Cummings, S. Haney, W. Humphrey, J. Reynders, S. Smith, and T. Williams. Array
design and expression evaluation in POOMA II. In D. Caromel, R. R. Oldehoeft, and M. Tholburn, editors,
Computing in Object-Oriented Parallel Environments, number 1505 in Lecture Notes in Computer Science.
Springer, 1998.

[21] Scott Kohn, Gary Kumfert, Jeff Painter, and Cal Ribbens. Divorcing language dependencies from a scientific
software library. InProceedings of the 10th SIAM Conference on Parallel Processing for Scientific Computing.
Society for Industrial and Applied Mathematics, 2001. Also available athttp://www.llnl.gov/CASC/
components/publications.html .

9

[22] V. Matena, M. Hapner, and B. Stearns.Applying Enterprive JavaBeans: Component-Based Development for the
J2EE Platform. The Java Series. Addison-Wesley, 2000.

[23] Jaroslaw Nieplocha, Robert J. Harrison, and Richard J. Littlefield. Global Arrays: a portable “shared-memory”
programming model for distributed memory computers. InSupercomputing’94, pages 340–349, Los Alamitos,
California, USA, 1994. Institute of Electrical and Electronics Engineers and Association for Computing Machin-
ery, IEEE Computer Society Press.

[24] Jaroslaw Nieplocha, Robert J. Harrison, and Richard J. Littlefield. Global arrays: A non-uniform-memory-access
programming model for high-performance computers.J. Supercomputing, 10(2):169, 1996.

[25] Boyana Norris, Satish Balay, Steve Benson, Lori Freitag, Paul Hovland, Lois McInnes, and Barry Smith. Parallel
components for PDEs and optimization: Some issues and experiences. Technical Report ANL/MCS-P932-0202,
Argonne National Laboratory, February 2002. Available viahttp://www.mcs.anl.gov/cca/papers/
p932.pdf ; under review as an invited paper in a special issue ofParallel Computingon Advanced Program-
ming Environments for Parallel and Distributed Computing.

[26] Manish Parashar and James C. Browne. Systems engineering for high performance computing software: The
HDDA/DAGH infrastructure for implementations of parallel structured adaptive mesh refinement. In S. B.
Baden, N. P. Chrisochoides, D. B. Gannon, and M. L. Norman, editors,Structured Adaptive Mesh Refinement
(SAMR) Grid Methods, volume 117 ofThe IMA Volumes in Mathematics and its Applications, pages 1–18.
Springer, 2000.

[27] Manish Parasher, James C. Browne, Carter Edwards, and Kenneth Klimkowski. A common data management
infrastructure for adaptive algorithms for PDE solutions. InSC97 Conference Proceedings. Association for Com-
puter Machinery and IEEE Computer Society, November 1997.http://www.supercomp.org/sc97/
proceedings/ .

[28] John V. Reynders, Paul J. Hinker, Julian C. Cummings, Susan R. Atlas, Subhankar Banerjee, William F.
Humphrey, Steve R. Karmesin, Kataryzna Keahey, M. Srikant, and MaryDell Tholburn. POOMA: A framework
for scientific simulations on parallel architectures. In Gregory Wilson and Paul Lu, editors,Parallel Programming
using C++, pages 553–594. MIT Press, 1996.

[29] R. Sessions.COM and DCOM: Microsoft’s Vision for Distributed Objects. John Wiley & Sons, 1997.

[30] Marc Snir, Steve Otto, Steven Huss-Lederman, David Walker, and Jack Dongarra.MPI: The Complete Reference,
volume 1 – The MPI Core. MIT Press, 2nd edition, September 1998.

[31] Advanced Visualization Systems.http://www.avs.com .

10

UCRL-JC-150544

Component Technology
for Laser Plasma
Simulation

W. J. Bosl, S. G. Smith, T. Dahlgren, T. Epperly, S.
Kohn, and G. Kumfert

September 23, 2002

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and shall
not be used for advertising or product endorsement purposes.

This work was performed under the auspices of the U. S. Department of Energy by the University of
California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

This is an internal report. The opinions and conclusions stated are those of the author and may or may not be
those of the Laboratory. This report is not intended to be given external distribution or cited in external
documents without the consent of the LLNL Technical Information Department.

This report has been reproduced
directly from the best available copy.

Component Technology for Laser Plasma Simulation
William J. Bosl

bosl@llnl.gov

Thomas Epperly
epperley@llnl.gov

Steven G. Smith
sgsmith@llnl.gov

Scott Kohn

kohn1@llnl.gov

Lawrence Livermore National Lab

P.O. Box 808, L-561
Livermore, CA 94551

Tamara Dahlgren
dahlgren1@llnl.gov

Gary Kumfert
kumfert@llnl.gov

ABSTRACT
This paper will discuss the application of high performance
component software technology developed for a complex physics
simulation development effort. The primary tool used to build
software components is called Babel and is used to create
language-independent libraries for high performance computers.
Components were constructed from legacy code and wrapped
with a thin Python layer to enable run-time scripting. Low-level
components in Fortran, C++, and Python were composed directly
as Babel components and invoked interactively from a parallel
Python script.

Categories and Subject Descriptors
D.2.12 [Software Engineering]: Interoperability – distributed
objects, interface definition languages.

General Terms
Algorithms, Performance, Languages

Keywords
Components, scientific computing, numerical methods, physics.

1. INTRODUCTION
The scientific computing community has invested a significant
amount of resources towards the development of high-
performance scientific simulation software, including numerical
libraries, visualization, steering, software frameworks, and physics
packages. Unfortunately, because this software was not designed
for interoperability and re-use, it is often difficult to share these
sophisticated software packages among applications due to
differences in implementation language, programming style, or
calling interfaces. It is highly desirable to be able to reuse large and
complicated software packages without having to devote large
amounts of time to re-engineer them [1]. Moreover, many of the
simulations that are required today involve multiple physical and
chemical processes, so-called multiphysics simulations. Building
these codes from pre-tested software components is much more

reliable and efficient than trying to build a complete simulator
from scratch [2].

One example of a complicated multiphysics simulation problem is
the interaction of lasers with plasmas. Simulation of laser plasma
interaction is an important design tool, complementing theoretical
analysis and experimentation for developing complicated laser
tools for studying inertial confinement fusion. The software
required for simulating these complex physical processes reflects
the physical system: it is complex. To carry out numerical
experiments and analyze the resulting computational data, the
software must be flexible enough to allow scientists to quickly and
easily compare competing physics models and alternative design
strategies. Constructing complex simulation codes from available
software components is an efficient strategy for building a new
laser plasma simulation code.

In this paper, will present our experiences wrapping a large
scientific simulation code using the Babel language interoperability
tool [8] so that the application could be driven from the Python
scripting language. Furthermore, we were able to freely mix C++,
Fortran, and Python modules in the software. For example, from
the scripting layer, we were able to call the application code in
C++, which in turn called a numerical routine written in Fortran,
which in turn called a bounary condition routine written in
Python. This language interoperability enabled us to rapidly
prototype new boundary conditions modules in Python without
recompiling or linking the whole code. We discovered that
compiler incompatibilities introduced some difficulties in code
reuse. This problem is ubiquitous and is not limited to the Babel
tool. We will discuss the trade-offs using a tool such as Babel as
compared to a more traditional wriapping solution such as SWIG.

2. ALPS: Adaptive Laser Plasma Simulator
The ability to predict and control laser-plasma interactions is
critical for the design of inertial confinement fusion (ICF)
experiments. ICF involves the use of high powered lasers to
rapidly ionize and compress hydrogen fuel pellets sufficiently to
initiate a fusion reaction. During these experiments, a plasma filled
region is created by the ionizing fuel. The laser must continue to

propagate through the plasma region to achieve the desired
distribution of energy at the target fuel pellet. Simulation of the
laser plasma interactions is used to predict and control laser
parameters for ICF experiments.

The Adaptive Laser Plasma Simulator (ALPS) project [3] is being
developed using the SAMRAI (Structured Adaptive Mesh
Refinement Applications Infrastructure) [4,5] system currently
under development in CASC. SAMRAI is a C++ class library that
supports the development of application codes utilizing
structured adaptive mesh refinement (AMR) algorithms.
Parallelism on distributed memory architectures is handled by the
framework, freeing the user from most of these details. Data
layout and interprocess communication is performed through an
interface to the standard Message Passing Interface (MPI) library.

3. Component Software Technology
Component technology is an extension of scripting and object-
oriented software development techniques that specifically
focuses on the needs of software re-use and interoperability.
Component-based software techniques address issues of language
independence and component connection behavior that other
software techniques do not address. To use a hardware analogy, a
component is like a "software integrated circuit" with well-defined
pin-outs that may be connected to compatible pins on other
"software integrated circuits." Figure 1 is a cartoon illustration of
how we used Babel as the backplane to connect software
components together to create an application.

3.1 Commercial solutions
Component approaches based on CORBA [9], COM [12], and
Java technologies are widely used in industry but will not scale to
support large parallel applications in science and engineering. Our
research focuses on the unique requirements of scientific
computing on high-performance machines, such as fast in-process
connections among components, language interoperability for
scientific languages, and data distribution support for massively
parallel SPMD components.

3.2 Babel
Babel is a language interoperability tool that uses a Scientific
Interface Definition Language (SIDL) to describe component
interfaces. Using SIDL descriptions, Babel automatically generates
code to mediate differences between components written in
different languages.

Computational scientists developing large simulation codes often
face difficulties due to language incompatibilities among various
software libraries. Scientific software libraries are written in a
variety of programming languages, including Fortran, C, C++, or a
scripting language such as Python. Language differences often
force software developers to generate mediating glue code by hand.
In the worst case, computational scientists may need to re-write a
particular library from scratch or not use it at all. We have
developed a tool called Babel that addresses language

interoperability and re-use for high-performance parallel scientific
software. Its purpose is to enable the creation, description, and
distribution of language independent software libraries.

Babel addresses the language interoperability problem using
Interface Definition Language (IDL) techniques. An IDL describes
the calling interface (but not the implementation) of a particular
software library. IDL tools such as Babel use this interface
description to generate glue code that allows a software library
implemented in one supported language to be called from any
other supported language. We have designed a Scientific Interface
Definition Language (SIDL) that addresses the unique needs of
parallel scientific computing. SIDL supports complex numbers
and dynamic multi-dimensional arrays as well as parallel
communication directives that are required for parallel distributed
components. SIDL also provides other common features that are
generally useful for software engineering, such as enumerated
types, symbol versioning, name space management, and an object-
oriented inheritance model similar to Java.

The Babel parser, which is available either at the command-line or
through the Alexandria web interface, reads SIDL interface
specifications and generates an intermediate XML representation.
XML is a useful intermediate language since it is amenable to
manipulation by tools such as a repository or a problem solving
environment. XML interface descriptions are stored either in a
local file repository or on the web using Alexandria. The vision is
that a scientist downloading a particular software library from the
component repository will receive not only that library but also
the required language bindings generated automatically by the
Babel tools.

The Babel code generator reads SIDL XML descriptions and
automatically generates glue code for the specified software
library. This glue code mediates differences among calling
languages and supports efficient inter-language calls within the
same memory address space and, eventually, across memory
spaces for distributed objects. The code generators create four
different types of files: stubs, skeletons, Babel internal
representation, and implementation prototypes. The Babel
internal object representation created by the code generators is
similar to that used by COM, CORBA's Portable Object Adaptor,
and scientific libraries such as PETSc. The internal object
representation is essentially a table of function pointers, one for
each method in an object's interface, along with other information
such as internal object state data, parent classes and interfaces, and
Babel data structures. Stub and skeleton code translates between
the calling conventions of a particular language and the internal
Babel representation. The code generators also create
implementation files that contain function prototypes to be filled
in by the library developers. To simplify the task of library
writers, we have added automatic Makefile generation as well as a
code splicing capability that preserves old edits during the
regeneration of implementation files after modifications to the
SIDL source. Finally, the run-time library provides general
services such as reference counting and dynamic type

identification. In the future, we expect to support dynamic loading
of objects, reflection, and a dynamic invocation interface.

4. PyALPS
Currently, our laser plasma simulations are carried out using a
uniform rectangular grid. This prohibits the use of high resolution
in the regions of greatest interest by requiring a uniform grid over
the entire domain. However, the code currently used for laser-
plasma simulation is highly developed as a scientific and
engineering design tool. In particular, an in-house scripting
language called Yorick [11] is used for interactive steering and
control of laser calculations. Yorick is an interpreted programming
language, designed for postprocessing or steering large scientific
simulation codes. Smaller scientific simulations or calculations can
be written as standalone yorick programs. The language features a
compact syntax for many common array operations, so it
processes large arrays of numbers very efficiently.

4.1 Scripting
For use as a scientific and engineering design tool, ALPS requires
the run-time flexibility of a scripting language, such as the Yorick
capability that current laser physicists are accustomed to having.
We adopted Python as a scripting language because it has a large
and growing scientific user base and has a parallel implementation.

Since detailed simulations of laser plasma interactions can
consume many hours of supercomputer time, it is often desirable
to do calculations with either limited spatial resolution or a small
number of time steps, then look at the results and determine
whether some adjustment of the parameters is needed before
continuing on with a lengthy calculation. Similarly, short period
simulations may be used to examine the effects of parameter
variations. Scripting enables laser scientists to perform simulations
in a controlled fashion to maximize the amount of information that
can be obtained in a limited time [8]. It also allows a great deal of
flexibility by allowing different or new physics modules to be
invoked quickly and easily. Scripted codes can be run interactively
or in batch mode, giving the user considerable flexibility over a
simulation.

We have used Babel to develop a scripted version of ALPS that
uses Python as the scripting language. Wrapping parts of the
ALPS code using Babel enables the creation of plug-n-play
modules in a variety of supported languages. From the highest
level at which users interact with pyAlps, the ALPS application
appears to be a Python package, consisting of pure Python
modules. that enables application users to compare ALPS results
against those produced by an existing computational tool. The
scripted interface will also allow ALPS users to interact with a
running simulation to visualize data on-the-fly. This collaboration
is the first to demonstrate Babel's applicability in a large-scale
scientific application.

One of the primary goals of creating a scripted version of ALPS
was to enable users to run ALPS interactively. Babel was used to

create thin Python wrappers for important capabilities in the
ALPS code. Specifically, we wrote interface files with Babel’s
Scientific Interface Definition Language (SIDL), which is similar to
the IDL interface used to write CORBA interfaces. The SIDL file
is a language-independent, object oriented description of the
attributes (member variables) and methods associated with
interfaces and classes. Babel uses the information in the SIDL file
to create language bindings for any of the supported languages.

An example of a SIDL file is shown here. It contains class
definitions for the basic Alps class and for beam modules, which
compute the energy intensity contained in a laser beam. The SIDL
file is used by the babel software to generate client-side and
server-side code, each in a specified language. For the Alps class,
the client is written in Python and all relevant files are presented
to the user as the pyAlps package. Once imported as a Python
package, an Alps class is created and methods can be invoked.
After initialization from an input file or restart data file, the user
may invoke several different run options in order to control time
stepping precisely. Visualization files can be written at any point
after the simulation has run to the currently-specified time and
viewed using visualization software. Parameters can be adjusted
using Python-wrapped database manipulation methods for the
input variables.

The following code is an example of a SIDL file for the pyALPS
package. Babel uses the information in this file to create glue code
in any of the supported languages to wrap each of the specified
objects.

 version pyAlps 0.1;
 package pyAlps {
 class Alps {
 void initialize(in pySAMRAI.InputDatabase database);
 void initializeFromRestart(in string dir, in int num, in
 pySAMRAI.InputDatabase database);
 double run(in double time);
 double runToFinish();
 double runTo(in double time);
 double step(in int num_iter);
 double stepTo(in int iteration);
 void writeRestart(in string fname, in int seq_num_ext);
 void writeVis(in string fname, in int seq_num);
 void finalize();
 }
 abstract class Beam {
 abstract void setBeam0(inout array<dcomplex,2> amp);
 final void setDopplerShift(in double a_doppler_shift);
 final double getDopplerShift();
 final void setCenter(in array<double,1> a_center);
 final void getCenter(out array<double,1> a_center);
 final void setMaxIntensity(in double a_intensity);
 final void getMaxIntensity(out double a_intensity);
 }
 class Cos2_Beam extends Beam {
 void setBeam0(inout array<dcomplex,2> amp); }
 class SphericalCos2_Beam extends Beam {
 void setBeam0(inout array<dcomplex,2> amp); }

 class Gaussian_Beam extends Beam {
 void setBeam0(inout array<dcomplex,2> amp); }
 class SuperGaussian_Beam extends Beam {
 void setBeam0(inout array<dcomplex,2> amp); }
 }
In particular, note that the beam class is declared to be an abstract
class. This means that at least of the member functions of the
beam class is abstract and is not defined within the beam class.
Subclasses of the general beam class must define a setBeam0
method. The abstract beam class also declares a number of member
functions that will be explicitly defined in the implementation of
the beam class. These member functions are common to all
subclasses of the beam module, although they may be substituted
with new functions in subclasses. Babel can create Beam modules
in any of the supported languages, currently including F77,
Python, C, and C++ from the SIDL file.

Our initial task was to decompose the ALPS code into
components that were appropriate for run-time scripting. The
primary tasks performed in the monolithic code were to read and
process input data, initialize data structures, loop through a
specified time loop, and output data at regular intervals in the time
loop. These code segments formed the basic components that
were to be controlled from the script.

The ALPS code simulates the interaction of a set of laser beams
with a plasma in space and time. The computational grid is a
sophisticated adaptive, multilevel grid that is required for high
resolution. Often, run-time parameters for the complex simulation
runs are not know precisely. Scientists needed a simulation tool
that could be run a certain number of time steps, stopped and
queried using visualization tools to inspect intermediate field
variables, then modified by changing certain key parameters and
run forward in time for a fixed interval again. This gave the
scientists a steering capability through Python scripting.

A parallel version of Python, pyMPI, developed at LLNL and
available publically through SourceForge [12] was adopted for
Python scripting. ALPS is built using the SAMRAI framework
for adaptive mesh simulations on parallel machines, together with
legacy Fortran code obtained from laser physicists. Linear solvers
from the PETSc library and HYPRE are available through the
SAMRAI framework and invoked for solving linear systems.
Babel was able to generate code to glue together all these packages
in appropriate components. Of particular note was the
decomposition of SAMRAI into components for data I/O and
mesh initialization. From the scientist’s view, pyALPS looks like
a normal python script. An example of a pyALPS script is shown
here:

import sys
import pySAMRAI.InputDatabase
import pySAMRAI.Alps

Create the input database
inputdb = pySAMRAI.InputDatabase.InputDatabase()
inputdb.initialize("ALPS")
inputdb.parseInputFile("alps.input")

Create alps object and initialize the state
alps = pySAMRAI.Alps.Alps()
alps.initialize(inputdb)

Change some values
griddingdb = inputdb.getDatabase("GriddingAlgorithm")
print("Old efficiency_tolerance = %f" %
griddingdb.getDouble("efficiency_tolerance"))
print("Old combine_efficiency = %f" %
griddingdb.getDouble("combine_efficiency"))
griddingdb.putDouble("efficiency_tolerance", 0.90)
griddingdb.putDouble("combine_efficiency", 0.90)
print("New efficiency_tolerance = %f" %
griddingdb.getDouble("efficiency_tolerance"))
print("New combine_efficiency = %f" %
griddingdb.getDouble("combine_efficiency"))

Step 5 time steps …
alps.Step(5)
… then do something with the data!
Run to the end specified in the input file
alps.runToFinish()
Finalize everything
alps.finalize()

One of the primary difficulties encountered in this project was
related to the need to create dynamic libraries for run-time loading.
Incompatible compiler options seemed to cause the most build
problems. During the integration process the low level details of
simply building the code caused an unexpected number problems.
Several of the packages we were integrating had not been compiled
as a shared library before. This mandated a reworking of the build
systems in order to support the necessary compilation steps.
While this was expected, the brittleness of the build process was
not. We found that even slight variations in the compiler options
used to compile each package could cause link or runtime failures.

The runtime failures in particular are troublesome since a method
invocation would fail in a system library for no obvious reason.
To overcome this we standardized on a set of compilers and
compile flags for all packages. While this is a simple (and
obvious) solution, it is not a satisfactory solution if the goal is to
have a large set of easy to use components for widespread use.
Given the target audience for a scientific component architecture
contains developers for whom dynamic linking will be a new
experience, these types of problems could pose a barrier for
software reuse, especially for software in object or component
form. The component software community may need to move
towards some kind of compiler meta-data for packages or
something else to facilitate mixing of binary libraries, especially
with C++.

Creating SIDL files needed to wrap each of the components is is a
little tedious, but is relatively straight-forward. We did not find
this to be a particularly difficult issue.

4.2 Plug and Play Modularity
In addition interactive control of simulations, the capability of
easily swapping in alternative physics modules is a desirable new
feature for laser plasma simulations. Scientific investigation using
simulation often involves testing and comparing alternative
physics modules or new algorithms. Our goal was to enable rapid
replacement of classes, subroutines, or groups of related classes
and subroutines with alternatives.

To do this, appropriate pieces of code were wrapped using Babel
and made into Babel components. These components can be
accessed by driver routines written in any of the Babel supported
languages. Alternative components can then be written by
application scientists in any language that’s convenient and
wrapped with Babel to make an alternative component that can be
seamlessly interchanged with the original component. Because the
application scientist is free to implement new components in a
language such as Python, new algorithms can be written quickly
and tested in the pyALPS code. Important components can be
optimized in another programming language later if desired.

One of the novel and powerful capabilities provided by Babel
components is the ability to call any of the supported languages
from any other. Thus, not only can Python call C or Fortran
subroutines as, for example, SWIG extensions to Python, but
Fortran can also call Python functions. We used this feature to
create a powerful plug and play capability for scientific
exploration of new beam modules.

4.2.1 Beam Modules
In the ALPS code, beam calculations are invoked from within the
legacy Alps code. The original beam subroutines are written in
Fortran and are called from Fortran subroutines, which are
originally invoked from the Alps C++ driver code. Using the
SIDL file shown above for the Beam class, we made Beams a
component of the system and modified the ALPS driver to call
Beam components rather than the original embedded Fortran
subroutines. Beam modules clients were created in Fortran using
Babel to enable us to use the original Fortran beam calculations.
Once this was done, we also created Python beam clients to
demonstrate this capability. The advantage of Python beam
modules is that they can be created quickly and do not need to be
compiled to be invoked by the pyAlps simulator. This provides a
versatile tool for scientific experimentation.

Figure 1. Physics components can be written in any of the
languages supported by Babel. Components written in
Python, for example, can be invoked without recompiling to
rapidly test new algorithms.

4.2.2 Lessons Learned
Creating new modules was not as difficult as building the
components created from legacy code and linking them together.
This is due largely to the fact that new beam modules are designed
and written specifically for the component system. Python
modules are particularly easy to write and invoke from the Python
script. Perhaps the only difficulty in adopting this approach was
learning to use Babel arrays within Fortran in order to pass them
to the component layer on the client side. Arrays must be passed
back and forth to client and server in a language independent
fashion and this is accomplished by requiring the creation of Babel
arrays in all user code.

5. Discussion
Several different approaches are available today to build language
independent components that can be re-used in multiple
applications, used to assemble complex multi-physics simulators
from pre-built software, and run simulation codes from a scripting
language such as Python. Babel is a tool that offers certain unique
features if those features are required, including a powerful array
syntax, support for complex numbers, and parallel computing.
The price for this capability is a need for careful attention to
compiler options for all codes that must interoperate and the need
to learn Babel data structures and the Babel scientific interface
definition language. If Babel’s unique features are required, then
this is a price that has to be paid, for there are few other options
at this time that provide all these features.

6. ACKNOWLEDGMENTS
Funding for this project is provided by the LLNL Laboratory
Directed Research and Development program and the DOE Office
of Science.

7. REFERENCES
[1] Rob Armstrong, Dennis Gannon, Al Geist, Katarzyna

Keahey, Scott Kohn, Lois Mcinnes, Steve Parker, and
Brent Smolinski, “Toward a Common Component
Architecture for High Performance Scientific
Computing,” High Performance Distributed
Computing Conference, 1999.

[2] A. Cleary, S. Kohn, S. Smith, B. Smolinski, “Language
Interoperability Mechanisms for High-Performance
Scientific Applications,” Proceedings of the SIAM
Workshop on Object-Oriented Methods for Inter-
Operable Scientific and Engineering Computing,
Yorktown Heights, NY, October 21-23, 1998.

[3] M. Dorr, X. Garaizar, and J. Higginger, “Simulation of
Laser Plasma Filamentation Using Adaptive Mesh
Refinement”, Journal of Computational Physics, 177,
pp 233-263, 2002. See http://www.llnl.gov/CASC/alps.

[4] R. Hornung and S. Kohn, “The Use of Object-Oriented
Design Patterns in the SAMRAI Structured AMR
Framework,” Proceedings of the SIAM Workshop on
Object-Oriented Methods for Inter-Operable Scientific
and Engineering Computing, October 1998. See
http://www.llnl.gov/CASC/SAMRAI.

[5] R. Hornung and S. Kohn, “Managing Application
Complexity in the SAMRAI Object-Oriented
Framework,” Concurrency and Computation: Practice
and Experience (special issue on Software
Architecture for Scientific Applications), 2001.

[6] S. Kohn, G. Kumfert, J. Painter, and C. Ribbens.
“Divorcing Language Dependencies from a Scientific
Software Library,” Proceedings of the SIAM
Conference on Parallel Processing for Scientific
Computing, 2001.

[7] J. Ousterhout, Scripting: Higher Level Programming
for the 21st Century, IEEE Computer, March 1998.

[8] CORBA Components, Object Management Group,
OMG TC Document orbos/99-02-95, March 1999. See
http://www.omg.org

[9] B. Smolinski, S. Kohn, N. Elliott, and N. Dykman,
“Language Interoperability for High-Performance
Parallel Scientific Components,” International
Symposium on Object-Oriented Parallel Environments
(ISOPE) , December 1999.

[10] See http://sourceforge.net/projects/pympi.

[11] The Yorick Home Page, 2001. See ftp://ftp-
icf.llnl.gov/pub/Yorick/yorick-ad.html.

[12] http://www.microsoft.com/com/default.asp.

	id151522cv.pdf
	DISCLAIMER

